Abstract:
Zwitterionic carboxybetaine copolymers and their use in coatings to impart non-fouling and functionality to surfaces, particularly surfaces of blood-contacting medical devices.
Abstract:
The present disclosure features a composition, including molecularly imprinted crosslinked polymers that have been imprinted with trimethylamine N-oxide. The molecularly imprinted crosslinked polymers have specific binding sites for trimethylamine N-oxide, and a trimethylamine N-oxide absorption capacity of at least 0.5 mg/g.
Abstract:
Methods for making a conductive hydrogel, comprising photochemically polymerizing polymerizable hydrogel-forming agents in the presence of a polymerizable conductive monomer to provide a conductive hydrogel; liquid resins for preparing conductive hydrogels comprising photochemically polymerizable hydrogel-forming agents and polymerizable conductive monomers; conductive hydrogels prepared by the methods or from the liquid resins; and electrodes comprising the conductive hydrogels.
Abstract:
The present disclosure features a composition, including molecularly imprinted crosslinked polymers that have been imprinted with trimethylamine N-oxide. The molecularly imprinted crosslinked polymers have specific binding sites for trimethylamine N-oxide, and a trimethylamine N-oxide absorption capacity of at least 0.5 mg/g.
Abstract:
The present disclosure features a composition, including molecularly imprinted crosslinked polymers that have been imprinted with trimethylamine N-oxide. The molecularly imprinted crosslinked polymers have specific binding sites for trimethylamine N-oxide, and a trimethylamine N-oxide absorption capacity of at least 0.5 mg/g.
Abstract:
The present technology relates generally to intraocular pressure (“IOP”) monitoring systems and associated devices and methods. In some embodiments, an intraocular pressure monitoring system configured in accordance with the technology comprises an implantable intraocular assembly and an external unit configured to transmit power to and receive data from the intraocular assembly. The intraocular assembly can include an IOP sensing device embedded within a flexible, expandable annular member. The IOP sensing device can include an antenna, a pressure sensor, and a microelectronic device encapsulated by an elastomer.