摘要:
A composite hot drape vacuum forming method and apparatus. The apparatus includes an elongate vacuum chamber (12) having a lid (14) and a housing (16). An inflatable seal (26) is disposed between the lid (14) and the housing (16). Inflation of the inflatable seal (26) creates on airtight vacuum chamber. A heating blanket (36) is located in the bottom of the vacuum chamber (12). An inflatable bladder (28) is located on top of the heating blanket and extends approximately over the length of the vacuum chamber. The interior of the inflatable bladder is in fluid connection with the exterior of the vacuum chamber. Composite charges (40) are placed within the vacuum chamber on top of the vacuum bladder (28). Lay-up mandrels (42) are placed on top of the unformed composite charges and the vacuum chamber is closed and sealed. The composite charges (40) are heated using the heating blanket (36). The interior of the vacuum chamber is then evacuated. As the interior is evacuated, the inflatable bladder expands forming the composite charges (40) around the lay-up mandrels (42). After forming, the pressure in the interior of the vacuum chamber (12) is equalized and the lid (14) is opened. The formed composite charges and mandrels are then removed.
摘要:
Methods and systems for manufacturing fiber-reinforced resin parts are disclosed herein. In one embodiment, a method for manufacturing a fiber-reinforced resin part includes positioning a plurality of fibers on a mold surface of a female tool, and covering the fibers with a sealing layer. The method further includes pressing a portion of the covered fibers against an interior transition region (e.g., an internal radius) of the mold surface. While the portion of covered fibers is pressed against the interior transition region, air is removed from between the sealing layer and the mold surface to draw at least a partial vacuum between the sealing layer and the mold surface.
摘要:
Methods and systems for manufacturing fiber-reinforced resin parts are disclosed herein. In one embodiment, a method for manufacturing a fiber-reinforced resin part includes positioning a plurality of fibers on a mold surface of a female tool, and covering the fibers with a sealing layer. The method further includes pressing a portion of the covered fibers against an interior transition region (e.g., an internal radius) of the mold surface. While the portion of covered fibers is pressed against the interior transition region, air is removed from between the sealing layer and the mold surface to draw at least a partial vacuum between the sealing layer and the mold surface.
摘要:
Methods and systems for manufacturing fiber-reinforced resin parts are disclosed herein. In one embodiment, a method for manufacturing a fiber-reinforced resin part includes positioning a plurality of fibers on a mold surface of a female tool, and covering the fibers with a sealing layer. The method further includes pressing a portion of the covered fibers against an interior transition region (e.g., an internal radius) of the mold surface. While the portion of covered fibers is pressed against the interior transition region, air is removed from between the sealing layer and the mold surface to draw at least a partial vacuum between the sealing layer and the mold surface.
摘要:
A method of disassembling at least a portion of a structure that includes parts which are bonded together. The method includes selecting a subsurface depth within the structure at which it is desired to cause debonding of the structure. A laser beam diameter, pulse width and power level predetermined to produce a peak tensile stress within the structure at the selected depth are selected. A laser having the selected beam diameter is used to apply a shock load at the selected pulse width and power level to the structure. Using this method, damaged or unwanted aircraft skin, patches or overlays on structure can be removed more cleanly and simply than milling, grinding or other mechanical methods.
摘要:
A method for curing fiber-reinforced resin matrix composite materials (22) includes the steps of providing a form (14) and positioning uncured composite material (22) on the form (14) substantially into a desired shape. The composite material (22) is then cured by providing a fluid bath (10) heated to a predetermined temperature, and heating the composite material (22) by immersing the positioned composite material (22) on the form (14) into the fluid bath (10) for a predetermined time. The predetermined time is sufficient to allow the composite material (22) to become cured and to heat the composite material (22) at a rate sufficient to provide resin flow prior to hardening. Compressive pressure is provided on the composite material (22) while it is immersed in the fluid bath (10).