Abstract:
PZT ferroelectric thin films for capacitors comprise a combination of a donor dopant and an acceptor dopant in a total amount of about 0.1 to 8 mole percent of PZT, or Sc alone in an amount of about 0.1 to 5 mole percent. Nb or Ta is employed as a donor dopant, while Sc, Mg or Zn can be used as an acceptor dopant. The presence of a single Sc acceptor dopant, or both an acceptor dopant and a donor dopant, results in increased endurance. Fatigue cycles are increased on the order of about 10.sup.5 relative to dopant-free films. Doping with a single Sc acceptor dopant, or both an acceptor dopant and a donor dopant, reduces coercive field, allowing PZT films to switch at relatively low voltages. PZT thin films of a pure perovskite phase are obtained in which a pyrochlore phase is completely excluded. Pt may be used as an electrode material. The leakage current of PZT films doped with both the acceptor and donor elements are similar to the leakage current level of pure PZT thin films.
Abstract:
An organometallic lead precursor, represented by following formula:L.sub.x.Pb(THD).sub.2 [I]wherein L is an electron donor ligand selected from the group consisting of NR.sub.3 (R=H, CH.sub.3) gas and Cl.sub.2 gas; THD denotes 2,2',6,6'-tetramethyl-3,5-heptanedione; and x is in the range of 0.5 to 2, is prepared by flowing a gas phase electron donor into a bubbler containing bis (2,2',6,6'-tetramethyl-3,5-heptanedione)Pb at a predetermined temperature, to synthesize, in-situ, an adduct. The precursor exhibits a remarkable improvement in volatility, and in stability at the vaporization point.Lead-titanium based thin films prepared from the precursor, display superior reproducibility and reliability.
Abstract:
This invention is related to the manufacturing method of ferroelectric capacitor, which can be applied to the memory cell of FRAM (Ferroelectric Random Access Memory). Fabrication of ferroelectric capacitor comprising the steps of: coating a first PZT sol-gel solution on a RuO.sub.X electrode to form a first PZT layer; baking the first PZT layer; annealing the first PZT layer to produce a seed layer with a perovskite structure; coating a second PZT sol-gel solution on the seed layer to form a second PZT layer; baking the second PZT layer; and annealing the second PZT layer to form a PZT film with a perovskite structure. The ferroelectric capacitor not only has a lower leakage current level and a higher degree of remanent polarization than the conventional capacitor, but also has almost the same leakage current level as an existing Pt/PZT/Pt capacitor.
Abstract:
An organometallic zirconium precursor, represented by following formula: L.sub.x .multidot.Zr(THD).sub.4 �I! wherein L is an electron donor ligand selected from the group consisting of NR.sub.3 (R.dbd.H, CH.sub.3) gas and Cl.sub.2 gas; THD denotes 2,2',6,6'-tetramethyl-3,5-heptanedione; and x is in the range of 0.3 to 1.5 with the proviso that L is NR.sub.3 or in the range of 0.5 to 2 with the proviso that L is Cl.sub.2, is prepared by flowing a gas phase electron donor into a bubbler containing bis (2,2',6,6'-tetramethyl-3,5-heptanedione)Zr at a predetermined temperature, to synthesize, in-situ, an adduct. The precursor exhibits a remarkable improvement in volatility, and in stability at the vaporization point. Lead-zirconium-titanium thin films prepared from the precursor, display superior reproducibility and reliability.
Abstract:
An organometallic lead precursor, represented by following formula: L.sub.x .multidot.Pb(THD).sub.2 �I! wherein L is an electron donor ligand selected from the group consisting of NR.sub.3 (R=H, CH.sub.3) gas and Cl.sub.2 gas; THD denotes 2,2',6,6'-tetramethyl-3,5-heptanedione; and x is in the range of 0.5 to 2, is prepared by flowing a gas phase electron donor into a bubbler containing bis (2,2',6,6'-tetramethyl-3,5-heptanedione)Pb at a predetermined temperature, to synthesize, in-situ, an adduct. The precursor exhibits a remarkable improvement in volatility and in stability at the vaporization point. Lead-titanium based thin films prepared from the precursor, display superior reproducibility and reliability.
Abstract:
An organometallic zirconium precursor, represented by following formula:L.sub.x.Zr(THD).sub.4 [I]wherein L is an electron donor ligand selected from the group consisting of NR.sub.3 (R.dbd.H, CH.sub.3) gas and Cl.sub.2 gas; THD denotes 2,2',6,6'-tetramethyl-3,5-heptanedione; and x is in the range of 0.3 to 1.5 with the proviso that L is NR.sub.3 or in the range of 0.5 to 2 with the proviso that L is Cl.sub.2, is prepared by flowing a gas phase electron donor into a bubbler containing bis (2,2',6,6'-tetramethyl-3,5-heptanedione)Zr at a predetermined temperature, to synthesize, in-situ, an adduct. The precursor exhibits a remarkable improvement in volatility, and in stability at the vaporization point.Lead-zirconium-titanium thin films prepared from the precursor, display superior reproducibility and reliability.