Abstract:
This invention relates to a novel method and system for dispensing CO2 vapor without over pressurization from a system having multiple containers. The system includes one or more liquid containers and one or more vapor containers. The system is designed to operate in a specific manner whereby a restricted amount of CO2 liquid is permitted into the vapor container through a restrictive pathway that is created and maintained by a shuttle valve during the filling operation so that equalization of container pressures is achieved, thereby allowing shuttle valve to reseat when filling has stopped. During use, a pressure differential device is designed to specifically isolate the vapor container from the liquid container so as to preferentially deplete liquid CO2 from the vapor container and avoid over pressurization of the system until the vapor container becomes liquid dry. The system can be operated so that at least 50% of the CO2 vapor product is dispensed from the vapor container.
Abstract:
This invention relates to a novel method and system for dispensing CO2 vapor without over pressurization. The system includes one or more liquid containers and one or more vapor containers. The system is designed to operate in a specific manner whereby a restricted amount of CO2 liquid is permitted into the vapor container through a restrictive pathway that is created and maintained by a shuttle valve during the filling operation so that equalization of container pressures is achieved, thereby allowing shuttle valve to reseat when filling has stopped. During use, a pressure differential device is designed to specifically isolate the vapor container from the liquid container so as to preferentially deplete liquid CO2 from the vapor container and avoid over pressurization of the system until the vapor container. The system is operated so that at least 50% of the CO2 product is dispensed from the vapor container. The system also includes novel control methodology for performing pre-fill integrity checks to ensure safety of subsequent dispensing of CO2 liquid from a source vessel to the onsite CO2 containers.
Abstract:
This invention relates to a novel method and system for dispensing CO2 vapor without over pressurization from a system having multiple containers. The system includes one or more liquid containers and one or more vapor containers. The system is designed to operate in a specific manner whereby a restricted amount of CO2 liquid is permitted into the vapor container through a restrictive pathway that is created and maintained by a shuttle valve during the filling operation so that equalization of container pressures is achieved, thereby allowing shuttle valve to reseat when filling has stopped. During use, a pressure differential device is designed to specifically isolate the vapor container from the liquid container so as to preferentially deplete liquid CO2 from the vapor container and avoid over pressurization of the system until the vapor container becomes liquid dry. The system can be operated so that at least 50% of the CO2 vapor product is dispensed from the vapor container.
Abstract:
This invention relates to a novel method and system for dispensing CO2 vapor without over pressurization. The system includes one or more liquid containers and one or more vapor containers. The system is designed to operate in a specific manner whereby a restricted amount of CO2 liquid is permitted into the vapor container through a restrictive pathway that is created and maintained by a shuttle valve during the filling operation so that equalization of container pressures is achieved, thereby allowing shuttle valve to reseat when filling has stopped. During use, a pressure differential device is designed to specifically isolate the vapor container from the liquid container so as to preferentially deplete liquid CO2 from the vapor container and avoid over pressurization of the system until the vapor container. The system is operated so that at least 50% of the CO2 product is dispensed from the vapor container. The system also includes novel control methodology for performing pre-fill integrity checks to ensure safety of subsequent dispensing of CO2 liquid from a source vessel to the onsite CO2 containers.
Abstract:
This invention relates to a novel method and system for dispensing CO2 vapor without over pressurization from a system having multiple containers. The system includes one or more liquid containers and one or more vapor containers. The system is designed to operate in a specific manner whereby a restricted amount of CO2 liquid is permitted into the vapor container through a restrictive pathway that is created and maintained by a shuttle valve during the filling operation so that equalization of container pressures is achieved, thereby allowing shuttle valve to reseat when filling has stopped. During use, a pressure differential device is designed to specifically isolate the vapor container from the liquid container so as to preferentially deplete liquid CO2 from the vapor container and avoid over pressurization of the system until the vapor container becomes liquid dry. The system can be operated so that at least 50% of the CO2 vapor product is dispensed from the vapor container.
Abstract:
This invention relates to a novel method and system for dispensing CO2 vapor without over pressurization from a system having multiple containers. The system includes one or more liquid containers and one or more vapor containers. The system is designed to operate in a specific manner whereby a restricted amount of CO2 liquid is permitted into the vapor container through a restrictive pathway that is created and maintained by a shuttle valve during the filling operation so that equalization of container pressures is achieved, thereby allowing shuttle valve to reseat when filling has stopped. During use, a pressure differential device is designed to specifically isolate the vapor container from the liquid container so as to preferentially deplete liquid CO2 from the vapor container and avoid over pressurization of the system until the vapor container becomes liquid dry. The system can be operated so that at least 50% of the CO2 vapor product is dispensed from the vapor container.
Abstract:
This invention relates to a novel method and system for dispensing CO2 vapor without over pressurization. The system includes one or more liquid containers and one or more vapor containers. The system is designed to operate in a specific manner whereby a restricted amount of CO2 liquid is permitted into the vapor container through a restrictive pathway that is created and maintained by a shuttle valve during the filling operation so that equalization of container pressures is achieved, thereby allowing shuttle valve to reseat when filling has stopped. During use, a pressure differential device is designed to specifically isolate the vapor container from the liquid container so as to preferentially deplete liquid CO2 from the vapor container and avoid over pressurization of the system until the vapor container. The system is operated so that at least 50% of the CO2 product is dispensed from the vapor container. The system also includes novel control methodology for performing pre-fill integrity checks to ensure safety of subsequent dispensing of CO2 liquid from a source vessel to the onsite CO2 containers.
Abstract:
A method for improving the uniformity of high-frequency discharge plasma by means of frequency modulation is disclosed. In a plasma discharge chamber, there is a pair of parallel electrodes. A high-frequency power supply is adopted to feed the electrodes. The frequency range of the electromagnetic field is 13.56 MHz˜160 MHz. Discharge gas is input to form plasma. The frequency of the fed-in high-frequency electromagnetic field is under automatic tuning control, and keeps changing cyclically without stop in the course of plasma discharge. The range of the frequency change may fall into either a portion of or the entire range of 13.56 MHz˜160 MHz and makes the locations with higher plasma density on the plane in parallel with the electrodes and in the plasma discharge space changed cyclically. In a time slot longer than one frequency change cycle, the average plasma density between the parallel electrodes is uniform.
Abstract:
This invention relates in part to a process for producing high purity acetylene by withdrawing a crude acetylene stream from a storage source, and passing said stream through an adsorbent bed that contains layered adsorption media to selectively remove moisture, solvent and carbon dioxide from the stream, thereby producing the high purity acetylene. The adsorption media is regenerated in-situ. The high purity acetylene product is useful as a source material for depositing carbon and carbon-containing films in semiconductor applications.
Abstract:
This invention is directed to various protocols for reprocessing off-spec gas to produce a concentration of off-spec gases to a desired target concentration. A combination of source gases is blended with the off-spec gas. This technique has the effect of enabling relatively small adjustments to the concentration of off-spec gas. Processes are also described that incorporate the blending protocols.