摘要:
A method and equipment for removing ammonia nitrogen from electrolytic manganese residue are provided in the technical field of solid waste resource utilization. The method includes following steps: step 1: adding phosphate and magnesium salt into electrolytic manganese residue leachate and fully reacting, where after the phosphate and the magnesium salt are added, n (Mg):n (N):n (P)=1.1-1.3:1:1 in the electrolytic manganese residue leachate; step 2: on a basis of the step 1, adjusting pH of the electrolytic manganese residue leachate to alkalinity, and stirring and reacting for 10-30 min; and step 3: on a basis of the step 2, filtering the electrolytic manganese residue leachate to obtain purified leachate and struvite respectively.
摘要:
The present invention relates to an anode assembly for use in an electrolytic cell for recovery of metal. The assembly includes a hanger bar, a first perimeter bar, a second perimeter bar, optionally one or more center conductor bars, a base bar, a first tab coupled to the first perimeter bar and/or the base bar, and a second tab coupled to the second perimeter bar and/or the base bar. The assembly may also include insulating separators coupled to the tabs and/or insulators coupled to an active area of the anode assembly. A system includes the anode assembly, a cathode assembly, and a tank.
摘要:
Provided is a method for efficiently producing tungsten carbide from a raw material mixture comprising at least one valuable containing tungsten. The present invention relates to a method for producing tungsten carbide, comprising the steps of subjecting a raw material mixture comprising at least one valuable containing tungsten to electrolysis using an organic electrolytic solution to dissolve tungsten in the electrolytic solution; and calcining the electrolytic solution containing dissolved tungsten at a temperature of 800° C. or more to obtain tungsten carbide.
摘要:
An electrolytic cell and a method of electrochemical oxidation of manganese(II) ions to manganese(III) ions in the electrolytic cell are described. The electrolytic cell comprises (1) an electrolyte solution of manganese(II) ions in a solution of 9 to 15 molar sulfuric acid; (2) a cathode immersed in the electrolyte solution; and (3) an anode immersed in the electrolyte solution and spaced apart from the cathode. Various anode materials are described including vitreous carbon, reticulated vitreous carbon, and woven carbon fibers.
摘要:
The present invention relates to an anode assembly for use in an electrolytic cell for recovery of metal. The assembly includes a hanger bar, a first perimeter bar, a second perimeter bar, optionally one or more center conductor bars, a base bar, a first tab coupled to the first perimeter bar and/or the base bar, and a second tab coupled to the second perimeter bar and/or the base bar. The assembly may also include insulating separators coupled to the tabs and/or insulators coupled to an active area of the anode assembly. A system includes the anode assembly, a cathode assembly, and a tank.
摘要:
An electrochemical cell and method for electrowinning a variety of multivalent metals including titanium is described. In one aspect, the invention provides an electrochemical cell comprising an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a cathode and configured for containing a catholyte comprising a metal to be electrolytically produced, and a diaphragm separating the anolyte chamber and the catholyte chamber, the diaphragm configured to control the potential drop across the diaphragm so that it is below the potential difference required for inducing bipolarity at the diaphragm.
摘要:
A method of preparing a metal containing inorganic ion exchanger in an electrochemical cell is disclosed. In one embodiment, the method comprises: (a) adding the inorganic ion exchanger to the electrochemical cell, wherein the electrochemical cell comprises a conductive electrolyte solution having a liquid phase and a solid phase; (b) depositing metal ions electrochemically into the liquid phase; (c) allowing the metal ions to deposit onto the inorganic ion exchanger during an electrochemical reaction to obtain a metal containing inorganic ion exchanger; (d) collecting the solid phase comprising the metal containing inorganic ion exchanger obtained in step (c); (e) removing remaining metal ions from the liquid phase; and (f) obtaining a substantially metal free liquid phase.
摘要:
A process for producing metal compounds directly from underground mineral deposits including the steps of forming a borehole at a site into a mineral deposit containing metal compounds, inserting a slurry-forming device having a nozzle into the borehole adapted to direct pressurized water through the nozzle into the mineral deposit, supplying pressured water through the nozzle into the mineral deposit forming a mineral slurry containing metal compounds, extracting the mineral slurry containing metal compounds through the borehole, leaching the mineral slurry to convert the metal compounds to a soluble form in a leach solution, and removing metals and metal compounds by treating the leach solution with an extraction treatment adapted to remove the metal products. Steps of leaching the mineral slurry and removing metal products are performed at a location remote from the borehole site. Alternatively, the step of removing metal products from mineral slurry may be accomplished by pyrometallurgical processes.
摘要:
A process for obtaining electrolytic manganese from the treated sludge of the exhaust gases of ferroalloy production furnaces for any other industrial waste having magnesium in general, with a significant manganese content, by means of a process consisting of the following phases: sulphation, lixiviation, purification, conditioning and electrolysis, and whereby a manganese sulphate liquor is obtained that is suitable for the already known electrolysis process, which allows obtaining electrolytic manganese.
摘要:
Using the electrolytic process to make manganese metal, a source of manganomanganic oxide (Mn.sub.3 O.sub.4) is used in the sulfuric acid leach solution in conjunction with a reducing agent to convert the manganomanganic oxide into manganese sulfate for treatment in the electrolytic cell. Sources of manganomanganic oxide include sintered manganese ore, manganese ore having less than 7% available oxygen such as Assoman Ore, and MOR fume. Reducing agents include sulfur dioxide, activated carbon, reducing sugars and molasses.