Abstract:
For reducing EMI and simplifying driving circuits, a plasma display panel includes a first substrate and a second substrate disposed facing each other, a plurality of barrier ribs disposed between the first and second substrates and forming a plurality of discharge cells, a phosphor layer formed in each of the discharge cells, a plurality of address electrodes formed on the second substrate, and a plurality of display electrodes formed on the first substrate in a direction crossing the plurality of address electrodes. Terminals of the plurality of display electrodes are located at a same side of the plasma display panel between the first substrate and the second substrate.
Abstract:
An alternating current (AC) plasma display panel is provided that emits little electromagnetic waves and which has no brightness irregularity. In this panel, pairs of scan electrodes and sustain electrodes are provided in rows, and data electrodes arranged orthogonally to the pairs of scan electrodes and sustain electrodes constitute a matrix. A conductor is disposed in each row in parallel with the scan electrodes and the sustain electrodes. The scan electrodes are coupled with a scan electrode driving circuit on the left side of the panel. The conductors are electrically coupled with the sustain electrodes on the right side of the panel and are connected with a sustain electrode driving circuit on the left side of the panel. When a sustain pulse voltage is applied, a current runs through the conductors in a direction reverse to a direction of the sustaining discharge current running through the scan electrodes and the sustain electrodes.
Abstract:
A plasma display device and a driving method thereof. For a plasma display device having an M electrode between X and Y electrodes, a sustain pulse is applied to the X and Y electrodes during an entire period, and a reset waveform and a scan pulse are applied to the M electrode. In addition, a scan pulse is applied to the M electrode while applying the sustain pulse to the X or the Y electrode. As a result, a gently decreasing reset waveform may be used so as to enhance contrast. Furthermore, driving circuits for driving the X and Y electrodes may be designed with the same scheme. In addition, an accurate address operation may be achieved.
Abstract:
Front substrate (1) contains a plurality of scan electrodes (6) and sustain electrodes (7). Two strips of scan electrodes (6) and two strips of sustain electrodes (7) are alternately disposed on the substrate. In addition, a plurality of auxiliary scan electrodes (20) is disposed on front substrate (1) so as to be parallel to scan electrodes (6). On back substrate (2), a plurality of priming electrodes (14) is disposed parallel to scan electrodes (6). Each auxiliary scan electrode (20) has electrical connections to the scan electrode that performs scanning earlier than the scan electrode adjacent to each auxiliary scan electrode (20). With the structure above, a priming discharge occurs between auxiliary scan electrodes (20) and priming electrodes (14).
Abstract:
A highly reliable plasma display panel with less difference in wiring resistance, which can be driven at high speed even though the front or rear board has multilayer electrode wiring. Data electrode (9) is covered with dielectric layer (15), and priming electrode (14) is provided on dielectric layer (15). External wiring lead-out (19) of data electrode (9) is provided on rear substrate (200), and external wiring lead-out (18) of priming electrode (14) is provided on dielectric layer (15). Wiring lead-out (19) and wiring lead-out (18) have step (20) equivalent to the thickness of dielectric layer (15).
Abstract:
A plasma display device and its driving method are provided which are capable of displaying an excellent image, without an increase in costs caused by an increased number of driving circuits, by shortening a scanning period while writing discharge is made to occur with reliability and by improving contrast. In a plasma display panel (PDP) in the plasma display device, a group of unit cells is formed at intersecting points between each of groups of row electrodes and a group of column electrodes. Each of unit cells is made up of a display cell and auxiliary cell and is surrounded by a horizontal rib and a longitudinal rib. A horizontal communicating aperture is formed in the longitudinal rib to partition among two or more auxiliary cells and a longitudinal communicating aperture is formed in the horizontal rib to partition between the display cell and auxiliary cell both being arranged in the column direction.
Abstract:
The present invention relates to a plasma display panel in which the time necessary for addressing is shortened, and a method and apparatus for driving the PDP. A plasma display panel according to a first embodiment of the present invention includes an upper substrate in which scan electrodes and sustain electrodes are formed, and a lower substrate in which an address electrode, a horizontal diaphragm and a vertical diaphragm are formed, wherein the horizontal diaphragms and the vertical diaphragms intersect one another to form a plurality of discharge cells, and the discharge cell includes a main discharge cell on which phosphors are coated, and a sub discharge cell on which magnesium oxide is coated. According to the first embodiment of the present invention, first horizontal diaphragms and second horizontal diaphragms are provided to form main discharge cells and sub discharge cells. A priming discharge is generated and an address discharge is generated within the sub discharge cells on which magnesium oxide is coated. An address discharge occurs rapidly.
Abstract:
A surface discharge alternating current plasma display panel has a pair of transparent electrodes supplied with current from metal bus electrodes through connecting portions spaced from each other by slits, a dielectric layer covering the pair of transparent electrodes and the metal bus electrodes and a porous insulating layer covering a part of the dielectric layer over the metal bus electrodes; when surface discharge occurs between the transparent electrodes of the pair, the surface discharge is spread toward the bus electrodes; however, the surface discharge can not exceed the slits; for this reason, the surface discharge is concentrated over the transparent electrodes.
Abstract:
An electrode substrate of an AC type plasma display panel has a major surface with electrically connected display electrodes formed thereon and defining a display portion of the substrate. An insulating layer, of a ZnO-containing glass material containing substantially no lead, is formed on and covers the display portion of the major surface. The display electrodes may be a film of a transparent electrically-conducted material or a multi-layer film combination of a transparent electrically-conducted film of a first width and a metal film of a second, narrower width.
Abstract:
A surface discharge type plasma display panel(PDP) includes a pair of front and rear substrates (11, 21) with a discharge space (30) therebetween and a plurality of pair display electrodes on internal surface of either the front or rear substrate. The display electrodes are extending along each display line L. The PDP further includes a light shielding film (45), having a belt shape extending along the display line direction, formed on either internal or outer surface of the front substrate (11) to overlap each area S2 between the adjacent display lines L and sandwiched between the display electrodes X and Y.