摘要:
A photovoltaic element comprising an electrode comprising an electrically conductive core member which is coated with a conductive adhesive fixed on the light incident surface of a photoactive semiconductor layer, via the conductive adhesive, is disclosed. The conductive adhesive is composed of at least two layers. The softening point of the conductive adhesive layer nearer to the core member is higher than the highest temperature encountered in the manufacture of the photovoltaic element.
摘要:
A photovoltaic cell in accordance with the present invention includes at least a metal layer, a semiconductive layer and a transparent electrode formed on a substrate. The metal layer is composed of a metal mainly containing aluminum; and has an x-ray diffraction pattern in which a (111) peak intensity is enhanced to at least 2.1 times a (200) peak intensity, at least 4.4 times a (220) peak intensity and at least 4.1 times a (311) peak intensity. The metal layer essentially consists of an aluminum-titanium alloy or an aluminum-magnesium alloy. An interlayer may be provided between the metal layer and the substrate.
摘要:
There is described a colored photovoltaic cell (1) with a semiconductor, preferably silicon, which has high efficiency and a pleasing colored appearance, allowing it to be used as a dial for a watch or another electronic apparatus powered by the cell. The cell includes a reflective metal substrate (2) serving as the bottom electrode, a stack of hydrogenated amorphous silicon layers forming p-i-n junctions (8), and a transparent top electrode (9). The latter may be coated with a layer (16) of slightly diffusing lacquer, which may be colorless or colored. The respective thicknesses e1 of the top electrode and e2 of the silicon are combined as a function of the refractive indices of the materials so as to produce an interferential reflection in a predetermined reflection spectrum.
摘要:
A photovoltaic element comprising a p-type semiconductor layer and a transparent conductive layer comprised of indium tin oxide bonded to each other at a surface is provided. The sum of tin oxide content and tin content of the transparent conductive layer varies in the layer thickness direction and is lowest at the bonding surface of the p-type semiconductor layer and the transparent conductive layer. Thus provided is a photovoltaic element which has a high photoelectric conversion efficiency with decreased reduction even when exposed to an intense light for a long period.
摘要:
A metal complex represented by the formula: (X)nML1L2, (X)2M(L1)2 or (L1)2ML2 wherein M represents a Group VIII metal, X represents a polar group, L1 represents a phenanthroline containing at least one carboxyl group which may be neutralized, L2 represents a nitrogen-containing polycyclic compound which may contain one or more substituents, and n is an integer of 1 or 2. A dye-sensitized oxide semiconductor electrode includes an electrically conductive body, an oxide semiconductor film provided on a surface of the electrically conductive body, and the above metal complex. A solar cell may be constructed from the above dye-sensitized oxide semiconductor electrode, a counter electrode, and a redox electrolyte contacting with both electrodes.
摘要:
A photovoltaic device is provided which comprises a back reflection layer, a zinc oxide layer and a semiconductor layer stacked in this order on a substrate, wherein the zinc oxide layer contains a carbohydrate. The content of the carbohydrate is preferably in the range of from 1 &mgr;g/cm3 to 100 mg/cm3. Thereby, the zinc oxide layer can be formed without abnormal growth to have a rough surface to achieve sufficient optical confinement effect, and the photovoltaic device is improved in the durability and the photoelectric conversion efficiency.
摘要翻译:提供了一种光电器件,其包括在衬底上依次堆叠的背反射层,氧化锌层和半导体层,其中氧化锌层含有碳水化合物。 碳水化合物的含量优选在1mug / cm 3至100mg / cm 3的范围内。 由此,可以不产生异常生长而形成氧化锌层而具有粗糙的表面以获得足够的光学限制效果,并且提高了光电装置的耐久性和光电转换效率。
摘要:
A powder glass solution is applied on top of a solar cell 12 with electrodes 17 formed thereon, and solvent is volatilized, followed by baking process, by which a glass 13 is directly formed on the top of the solar cell 12. In this way, the alignment between solar cell and glass as well as the finish work of removing overflowed adhesive are eliminated. Also, by selecting a powder glass having a coefficient of thermal expansion generally similar to that of a P-type silicon substrate 14, distortion by heating due to abrupt temperature changes is reduced. Thus, cost reduction and reliability improvement can be fulfilled.