Abstract:
A method for fabricating a light emitting diode chip is provided. Firstly, a semiconductor device layer is formed on a substrate. Afterwards, a current spreading layer is formed on a portion of the semiconductor device layer. Then, a current blocking layer and a passivation layer are formed on a portion of the semiconductor device layer not covered by the current spreading layer. Finally, a first electrode is formed on the current blocking layer and the current spreading layer. Moreover, a second electrode is formed on the semiconductor device layer.
Abstract:
A fabrication method of a light-emitting diode including forming an epitaxial layer on a first substrate; forming a metal pad and a stress release ring on the epitaxial layer, wherein the stress release ring surrounds the metal pad; performing a substrate replacement process to transfer the epitaxial layer, the metal pad, and the stress release ring onto a second substrate, wherein the metal pad and the stress release ring are disposed between the epitaxial layer and the second substrate; patterning the epitaxial layer to expose a portion of the stress release ring; and removing the stress release ring to suspend a portion of the epitaxial layer. Moreover, a light emitting diode is provided.
Abstract:
A method for transferring chips is provided for fixing one of the chips on a blue tape without sorting. A blue tape, a plurality of chips disposed thereon and a mapping data are provided, wherein the chips are disposed on the same blue tape, belong to the same wafer, and belong to a plurality of specifications. The specifications include a first specification and a second specification. The mapping data include the specifications the chips belonging to and the positions of the chips relative to the blue tape. According the mapping data, the chips belonging to the first specification are moved from the blue tape and fixed to a package carrier corresponding to the first specification. According the mapping data, the chips belonging to the second specification are moved from the blue tape and fixed to a package carrier corresponding to the second specification. A chip transferring apparatus is also provided.
Abstract:
A method for fabricating a light emitting diode chip is provided. Firstly, a semiconductor device layer is formed on a substrate. Afterwards, a current spreading layer is formed on a portion of the semiconductor device layer. Then, a current blocking layer and a passivation layer are formed on a portion of the semiconductor device layer not covered by the current spreading layer. Finally, a first electrode is formed on the current blocking layer and the current spreading layer. Moreover, a second electrode is formed on the semiconductor device layer.
Abstract:
A method for fabricating a light emitting diode chip is provided. Firstly, a semiconductor device layer is formed on a substrate. Afterwards, a current spreading layer is formed on a portion of the semiconductor device layer. Then, a current blocking layer and a passivation layer are formed on a portion of the semiconductor device layer not covered by the current spreading layer. Finally, a first electrode is formed on the current blocking layer and the current spreading layer. Moreover, a second electrode is formed on the semiconductor device layer.
Abstract:
A LED chip including a substrate, a semiconductor device layer, a current blocking layer, a current spread layer, a first electrode and a second electrode is provided. The semiconductor device layer is disposed on the substrate. The current blocking layer is disposed on a part of the semiconductor device layer and includes a current blocking segment and a current distribution adjusting segment. The current spread layer is disposed on a part of the semiconductor device layer and covers the current blocking layer. The first electrode is disposed on the current spread layer, wherein a part of the current blocking segment is overlapped with the first electrode. Contours of the current blocking segment and the first electrode are similar figures. Contour of the first electrode and is within contour of the current blocking segment. The current distribution adjusting segment is not overlapped with the first electrode.
Abstract:
An LED package including a lead-frame, at least an LED chip and an encapsulant is provided. The lead-frame has a roughened surface, the LED chip is disposed on the lead-frame and electrically connected to the lead-frame, and the roughened surface is suitable to scatter the light emitted from the LED chip. In addition, the encapsulant encapsulates the LED chip and a part of the lead-frame, and the rest part of the lead-frame is exposed out of the encapsulant.