摘要:
Disclosed is a nonvolatile memory device with cell and peripheral circuit regions confined on a substrate. Cell gate electrodes are arranged in the cell region while peripheral gate electrodes are arranged in the peripheral-circuit region. Each cell gate electrode includes stacked conductive and semiconductor layers, but the peripheral gate electrode includes stacked semiconductor layers. The conductive layer of the cell gate electrode is different from the lowest semiconductor layer of the peripheral gate electrode in material, which can improve characteristics of memory cells and peripheral transistors without causing mutual interference with each other.
摘要:
A semiconductor device having a self-aligned gate conductive layer and a method of fabricating the same are disclosed. In embodiments of the present invention, a plurality of field isolation patterns are formed on a semiconductor substrate to define a plurality of active regions in the semiconductor substrate. The density of the field isolation patterns is then increased by, for example, a thermal annealing process. A plurality of gate insulation patterns are then formed on respective of the active regions. A plurality of first conductive patterns are then formed on respective of the gate insulation patterns.
摘要:
A non-volatile memory device comprises a cell region defined at a substrate and a plurality of device isolation layers formed in the cell region to define a plurality of active regions. A charge storage insulator covers substantially the entire top surface of the cell region. A plurality of gate lines are formed on the charge storage insulator that cross over the device isolation layers. Conductive patterns are disposed between predetermined gate lines that penetrate the charge storage insulator to electrically connect with the active regions. According to the method of fabricating the device, a plurality of device isolation layers are formed in the substrate and then a charge storage insulator is formed on an entire surface of the substrate and the device isolation layers. A plurality of parallel gate lines that cross over the device isolation layers are formed on the charge storage insulator and then conductive patterns are formed between predetermined gate lines. The conductive patterns penetrate the charge storage insulator and electrically connect with the active regions.
摘要:
A NAND flash memory device, and methods of forming and operating the same are provided. The NAND flash memory device includes first and second selection gate lines sequentially disposed at one side of a plurality of cell gate lines. A first selection transistor including the first selection gate line serves as a buffer for decreasing a highly boosted channel voltage of a non-selected cell to minimize the leakage current of the NAND flash memory device.
摘要:
A non-volatile memory device includes a tunnel oxide layer, a charge storage layer, a blocking insulating layer, and a gate electrode that are sequentially stacked, as well as an impurity diffusion layer in an active region at both sides of the gate electrode. The gate electrode crosses active regions between device isolation layers formed in a predetermined area of a semiconductor substrate, and an edge of the charge storage layer is extended to have a protruding part that protrudes from the gate electrode. In order to form a charge storage layer having a protruding part, a stack insulating layer including first to third insulating layers is formed in an active region between the device isolation layers formed in the substrate. A plurality of gate electrodes crossing the active region are formed on the stack insulating layer, and a sidewall spacer is formed on both sidewalls of the gate electrode. Using the sidewall spacer and the gate electrode, the stack insulating layer is etched to form a charge storage layer that protrudes from the sidewall of the gate electrode.
摘要:
Methods of forming a memory device include forming a device isolation layer in a semiconductor substrate including a cell array region and a resistor region, the device isolation layer extending into the resistor region and defining an active region in the semiconductor substrate. A first conductive layer is formed on the device isolation layer in the resistor region. The semiconductor substrate is exposed in the cell array region. A cell insulation layer is formed on a portion of the semiconductor substrate including the exposed cell array region, the active region and the device isolation layer in the resistor region. A second conductive layer is formed on the cell insulation layer in the portion of the semiconductor substrate including the exposed cell array region, the active region and the device isolation layer in the resistor region. The second conductive layer is etched to form a cell gate electrode in the cell array region and to concurrently remove the second conductive layer from the resistor region and the first conductive layer is etched in the resistor region to form a resistor.
摘要:
In an example embodiment, a semiconductor substrate has a plurality of active regions separated by a plurality of trenches. A gate insulation film fills at least a portion of the trenches, and a conductive gate film is formed over the gate insulation film. In an example embodiment, the gate insulation film, may include a tunneling insulation film, a charge storage film, and a blocking insulation film. The example embodiment may also include field isolation films, which partially fill the trenches of the semiconductor substrate, such that the upper surfaces of the active regions or the substrate are higher than the upper surfaces of the field isolation films.
摘要:
A non-volatile memory device comprises a cell region defined at a substrate and a plurality of device isolation layers formed in the cell region to define a plurality of active regions. A charge storage insulator covers substantially the entire top surface of the cell region. A plurality of gate lines are formed on the charge storage insulator that cross over the device isolation layers. Conductive patterns are disposed between predetermined gate lines that penetrate the charge storage insulator to electrically connect with the active regions. According to the method of fabricating the device, a plurality of device isolation layers are formed in the substrate and then a charge storage insulator is formed on an entire surface of the substrate and the device isolation layers. A plurality of parallel gate lines that cross over the device isolation layers are formed on the charge storage insulator and then conductive patterns are formed between predetermined gate lines. The conductive patterns penetrate the charge storage insulator and electrically connect with the active regions.
摘要:
A non-volatile memory device may include a string of serially connected memory cell transistors with each memory cell transistor of the string being connected to a different word line. The non-volatile memory device may be programmed by applying a pass voltage to a first word line connected to a first memory cell transistor of the string, by applying a coupling voltage to a second word line connected to a second memory cell transistor of the string, and by applying a program voltage to a third word line connected to a third memory cell transistor of the string. More particularly, the coupling voltage can be greater than a ground voltage of the memory device, and the pass voltage and the coupling voltage can be different. In addition, the program voltage can be applied to the third word line while applying the pass voltage to the first word line and while applying the coupling voltage to the second word line, and the third memory cell transistor can be programmed responsive to applying the program voltage to the third word line wherein the second memory cell transistor is between the first and third memory cell transistors of the serially connected string. Related devices are also discussed.
摘要:
An electrically erasable charge trap nonvolatile memory cell has an initial threshold voltage, a program voltage that is higher than the initial threshold voltage, and an erase threshold voltage that is lower than the program threshold voltage but is higher than the initial threshold voltage. The programmed electrically erasable charge trap nonvolatile memory cells may be erased by applying an erase voltage for a time interval that is sufficient to lower the threshold voltage the transistor from a program threshold voltage to an erase threshold voltage that is lower than the program threshold voltage, but is higher than the initial threshold voltage. The time interval may be determined by repeatedly performing an endurance test using a time interval that is increased or decreased from an initial time interval, to obtain the time interval that meets an endurance specification, or allows a read to be performed successfully.