Abstract:
A current generator includes an op-amp having a negative terminal arranged to be coupled to an input voltage, a resistance selection circuit having at least one tunable resistor connected with each other, and at least one power transistor. A gate of the at least one power transistor is coupled to an output of the op-amp, and a drain of the at least one power transistor is coupled to the at least one tunable resistor or a load. The resistance selection circuit is configured to select a node of the at least one tunable resistor based on the input voltage for coupling from a positive terminal of the op-amp. The at least one tunable resistor is configured to adjust a resistance setting to control a current level of the current generator based on a power supply voltage or a current of a reference resistor.
Abstract:
A Decision Feedback Equalizer (DFE) with programmable taps includes a summer configured to receive a DFE input signal. Delay elements are coupled to the summer. The delay elements are connected in series. Each delay element provides a respective delayed signal of an input signal to the delay element. A weight generator is configured to provide tap weights. The DFE is configured to multiply each tap weight to the respective delayed signal from the respective delay element to provide tap outputs. Each tap output is selectively enabled to be added to the summer or disabled based on a first comparison of a first threshold value and each impulse response or each tap weight corresponding to the respective tap output, where the impulse response is the DFE input signal in response to a pulse signal transmitted through a channel.
Abstract:
A method of operating a charge pump of a phase-lock assistant circuit includes determining a first relative timing relationship of a phase of a data signal to a phase of a first phase clock. A second relative timing relationship of the phase of the data signal to a phase of a second phase clock is determined, and the first and second phase clocks have a 45° phase difference. An up signal and a down signal are generated in response to the first relative timing relationship and the second relative timing relationship. The charge pump circuit is driven according to the up signal and the down signal.
Abstract:
An inductor-capacitor phase locked loop (LCPLL) includes an inductor-capacitor voltage controlled oscillator (LCVCO) that provides an output frequency. A calibration circuit includes two comparators and provides a coarse tune signal to the LCVCO. The two comparators respectively compare the loop filter signal with a first reference voltage and a second reference voltage that is higher than the first reference voltage to supply a first and second comparator output, respectively. The calibration circuit is capable of adjusting the coarse tune signal continuously in voltage values and adjusts the coarse tune signal based on the two comparator outputs. A loop filter provides a loop filter signal to the calibration circuit and a fine tune signal to the LCVCO. A coarse tune frequency range is greater than a fine tune frequency range.
Abstract:
A current generator includes an op-amp having a negative terminal arranged to be coupled to an input voltage, a resistance selection circuit having at least one tunable resistor connected with each other, and at least one power transistor. A gate of the at least one power transistor is coupled to an output of the op-amp, and a drain of the at least one power transistor is coupled to the at least one tunable resistor or a load. The resistance selection circuit is configured to select a node of the at least one tunable resistor based on the input voltage for coupling from a positive terminal of the op-amp. The at least one tunable resistor is configured to adjust a resistance setting to control a current level of the current generator based on a power supply voltage or a current of a reference resistor.
Abstract:
A representative level-shifter comprises a dynamically biased current source circuit that receives a first voltage, a first and a second unidirectional current-conducting devices, a first and a second pull-down devices, and a pull-up device. The first and second unidirectional current-conducting devices are coupled to the dynamically biased current source circuit. A voltage output of the level-shifter is located at a first node that is located between the current-constant circuit and the second unidirectional current-conducting device. The first and second pull-down devices are coupled to the first and second unidirectional current-conducting devices, respectively. The pull-up device receives a second voltage and is coupled to the dynamically biased current source circuit and the first unidirectional current-conducting device. The pull-up device is configured to dynamically bias the dynamically biased current source circuit such that a voltage drop of the second unidirectional current-conducting device is output at the voltage output responsive to the pull-up device outputting the second voltage to the dynamically biased current source circuit, the first pull-down device being non-conducting and the second pull-down device being conducting.
Abstract:
An integrated circuit includes a first current source. A second current source is electrically coupled with the first current source via a conductive line. A switch circuit is coupled between the first current source and the second current source. A first circuit is coupled between a first node and a second node. The first node is disposed between the first current source and the switch circuit. The second node is coupled with the first current source. The first circuit is configured for substantially equalizing voltages on the first node and the second node. A second circuit is coupled between a third node and a fourth node. The third node is disposed between the second current source and the switch circuit. The fourth node is disposed coupled with the second current source. The second circuit is configured for substantially equalizing voltages on the third node and the fourth node.
Abstract:
A representative level-shifter comprises a dynamically biased current source circuit that receives a first voltage, a first and a second unidirectional current-conducting devices, a first and a second pull-down devices, and a pull-up device. The first and second unidirectional current-conducting devices are coupled to the dynamically biased current source circuit. A voltage output of the level-shifter is located at a first node that is located between the current-constant circuit and the second unidirectional current-conducting device. The first and second pull-down devices are coupled to the first and second unidirectional current-conducting devices, respectively. The pull-up device receives a second voltage and is coupled to the dynamically biased current source circuit and the first unidirectional current-conducting device. The pull-up device is configured to dynamically bias the dynamically biased current source circuit such that a voltage drop of the second unidirectional current-conducting device is output at the voltage output responsive to the pull-up device outputting the second voltage to the dynamically biased current source circuit, the first pull-down device being non-conducting and the second pull-down device being conducting.
Abstract:
A voltage regulator includes an output stage electrically coupled with an output end of the voltage regulator. The output stage includes at least one transistor having a bulk and a drain. At least one back-bias circuit is electrically coupled with the bulk of the at least one transistor. The at least one back-bias circuit is configured to provide a bulk voltage, such that the bulk and the drain of the at least one transistor are reverse biased during a standby mode of a memory array that is electrically coupled with the voltage regulator.
Abstract:
A circuit includes an operational PMOS transistor of a logic gate driver. A control circuit is configured to turn off the operational PMOS transistor during a standby mode. The circuit also includes a sacrificial PMOS transistor coupled to an output node. The operational PMOS transistor is coupled to the output node. The sacrificial PMOS transistor is configured to keep the output node at a logical 1 during the standby mode.