Abstract:
An electronic device may have a display. The display may have active components such as display pixels formed on a display substrate layer. The display substrate layer may be formed from a glass substrate layer. Thin-film transistors and other components for the display pixels may be formed on the glass substrate. An encapsulation glass layer may be bonded to the glass substrate using a ring-shaped bond structure. The ring-shaped bond structure may extend around the periphery of the encapsulation glass layer and the substrate glass layer. The bond structure may be formed from a glass frit, a solid glass ring, integral raised glass portions of the glass layers, meltable metal alloys, or other bond materials. Chemical and physical processing operations may be used to temper the glass layers, to perform annealing operations, to preheat the glass layers, and to promote adhesion.
Abstract:
Embodiments herein relate to a method for forming a bulk solidifying amorphous alloy sheets have different surface finish including a “fire” polish surface like that of a float glass. In one embodiment, a first molten metal alloy is poured on a second molten metal of higher density in a float chamber to form a sheet of the first molten that floats on the second molten metal and cooled to form a bulk solidifying amorphous alloy sheet. In another embodiment, a molten metal is poured on a conveyor conveying the sheet of the first molten metal on a conveyor and cooled to form a bulk solidifying amorphous alloy sheet. The cooling rate such that a time-temperature profile during the cooling does not traverse through a region bounding a crystalline region of the metal alloy in a time-temperature-transformation (TTT) diagram.
Abstract:
Techniques or processes for providing markings on products are disclosed. In one embodiment, the products have housings and the markings are to be provided on the housings. For example, a housing for a particular product can include an outer housing surface and the markings can be provided on the outer housing surface so as to be visible from the outside of the housing. The markings are able to be interferometric colors and/or black.
Abstract:
Plugs with core structural members and methods for manufacturing plugs with core structural members are provided. A plug can include a core structural member that may increase the structural integrity of the plug. The plug can further include contact pads and traces, and each trace can electrically couple with one of the contact pads and extend along a plug axis towards the proximal end (e.g., base section) of the plug. In orientation-specific embodiments, the traces may be disposed on the surface of the plug. However, in other embodiments, the traces may be disposed below but near the surface of the plug. The plug may also include one or more insulating layers to prevent contact pads and traces from shorting.
Abstract:
An input device that includes both a movement detector, such as mechanical switch, and positional indicator, such as touch pad touch screen, and/or touch sensing housing is disclosed. These two input devices can be used substantially simultaneously to provide a command to the device. In this manner, different commands can be associated with depressing a moveable member in different areas and a single moveable member can perform like several buttons.
Abstract:
A hard drive for a portable electronic device is provided that contains a multipurpose circuit board. The multipurpose circuit board may be mounted within a hard drive housing. System components and hard drive controller components may be mounted to the multipurpose circuit board. The multipurpose circuit board may be formed from a rigid flex structure or other structure that is able to accommodate translation of the multipurpose circuit board relative to the remainder of the portable electronic device in the event of an impact event. Components may be mounted to the multipurpose board in accordance with their heights. The portable electronic device may include components such as a battery, display, buttons, and other input-output devices that are connected to the multipurpose circuit board via flex circuit portions of a rigid flex or other electrical paths.
Abstract:
Plugs with core structural members and methods for manufacturing plugs with core structural members are provided. A plug can include a core structural member that may increase the structural integrity of the plug. The plug can further include contact pads and traces, and each trace can electrically couple with one of the contact pads and extend along a plug axis towards the proximal end (e.g., base section) of the plug. In orientation-specific embodiments, the traces may be disposed on the surface of the plug. However, in other embodiments, the traces may be disposed below but near the surface of the plug. The plug may also include one or more insulating layers to prevent contact pads and traces from shorting.
Abstract:
A hard drive for a portable electronic device is provided that contains a multipurpose circuit board. The multipurpose circuit board may be mounted within a hard drive housing. System components and hard drive controller components may be mounted to the multipurpose circuit board. The multipurpose circuit board may be formed from a rigid flex structure or other structure that is able to accommodate translation of the multipurpose circuit board relative to the remainder of the portable electronic device in the event of an impact event. Components may be mounted to the multipurpose board in accordance with their heights. The portable electronic device may include components such as a battery, display, buttons, and other input-output devices that are connected to the multipurpose circuit board via flex circuit portions of a rigid flex or other electrical paths.
Abstract:
An electronic device is provided that includes a housing and a connector assembly coupled to the housing. The connector assembly can include a microphone port. The electronic device can further include a microphone mounted within the housing and a channel that fluidically couples the microphone to the microphone port. A joint connector and microphone assembly is also provided. The assembly can include a microphone with a top surface and side surfaces. The top surface of the microphone can include a microphone input. The assembly can include a microphone boot mounted to the microphone such that the boot interfaces with a portion of the top surface and the side surfaces to form a seal around the microphone input. The microphone boot can include a connector sealing portion and an aperture for fluidically coupling the microphone input to a microphone port. The assembly can include a connector plate mounted to the connector sealing portion.
Abstract:
Headset assemblies and headset connectors are provided. Headset connectors can include a magnetic mating face and a plurality of electrical contacts disposed within the mating face. Engaging assemblies and engaging connectors are also provided. The engaging connectors can include a housing having a mating side, a magnetic array structure, and a plurality of spring biased contact members. The magnetic array structure can be fixed within the housing and house a plurality of spring biased contact members. The spring biased contact members can include tips that extend out of the mating side. The tips can electrically couple with electrical contacts in a headset connector.