Abstract:
A recharging device which illuminates by solar energy includes at least a housing in a predetermined special shape. The housing contains a circuit substrate which is electrically connected with a solar energy panel and an accumulator device, an illumination element, a sensor unit module, a recharging stand as well as a photocatalytic sterilization unit which are electrically connected with the circuit substrate; whereas, the circuit substrate is also electrically connected with an external surveillance camera unit and an external recharging stand. Therefore, the recharging device is not only able to recharge an electronic product, but also able to be provided with technical functions of detecting parameters including static, ultraviolet, air pollution, and humiture. In addition, by detecting the different parameters, the illumination element can change brightness or color of a light source.
Abstract:
A semiconductor structure includes a semiconductor substrate; a first well region of a first conductivity type in the semiconductor substrate; a metal-containing layer on the first well region, wherein the metal-containing layer and the first well region form a Schottky barrier; and a first heavily doped region of the first conductivity type in the first well region, wherein the first heavily doped region is horizontally spaced apart from the metal-containing layer.
Abstract:
A method of forming a semiconductor structure includes providing a substrate including a fin at a surface of the substrate, and forming a fin field-effect transistor (FinFET), which further includes forming a gate stack on the fin; forming a thin spacer on a sidewall of the gate stack; and epitaxially growing a epitaxy region starting from the fin. After the step of epitaxially growing the epitaxy region, a main spacer is formed on an outer edge of the thin spacer. After the step of forming the main spacer, a deep source/drain implantation is performed to form a deep source/drain region for the FinFET.
Abstract:
A power system having a power saving mechanism includes a voltage regulator, a power input module, and a switching signal generation unit. The voltage regulator performs a regulation operation on a first voltage for generating a second voltage. The power input module includes a transformer, a rectifying unit, a switch, and a switch control unit. The rectifying unit together with the transformer is put in use for converting an input voltage into the first voltage. The switch is employed to control a current flowing through the primary winding of the transformer. The switch control unit generates a control signal for controlling the switch according to a switching signal. The switching signal generation unit is utilized for generating the switching signal to disable the switch control unit during an energy transfer disable interval so as to decrease the first voltage from a first predetermined voltage to a second predetermined voltage.
Abstract:
A sensing and driving apparatus suitable for a sensing interface is provided. The sensing and driving apparatus includes a driving module and a sensing unit. The driving module outputs a first reference signal and a second reference signal which have different polarities with each other, and respectively transmits the first reference signal and the second reference signal to a first driving line and a second driving line of the sensing interface so as to generate a first sensing signal during a first period. The sensing unit receives the first sensing signal and detects a change of the first signal so as to generate a sensing result. A sensing and driving method, a touch sensing system and a device using the same are also provided herein.
Abstract:
A measurement correcting system including a field measuring unit and a processing unit is provided. The field measuring unit simultaneously senses a first signal to be measured and a second signal to be measured which have opposite polarities and substantially the same magnitude, and generates a first output signal and a second output signal correspondingly. The processing unit determines the first signal to be measured according to the first output signal and the second output signal. A measurement correcting method is also provided.
Abstract:
Methods and apparatus to indicate a position of a valve are described. An example position indicator apparatus includes a status indicator to provide an indication that corresponds to a displacement of a poppet relative to a seat ring of the fluid valve to determine one of a plurality of predetermined operational positions of the fluid valve. A follower is coupled to the poppet to follow movement of the poppet between the plurality of predetermined operational positions of the fluid valve. A coupler operatively couples the status indicator and the follower.
Abstract:
An object sensing apparatus including an object sensing unit, a signal selecting unit, at least one signal sensing unit, and a control unit is provided. The object sensing unit outputs a plurality of sensing signals. The signal selecting unit selects at least one of the sensing signals as a signal under test and selects at least one of the unselected sensing signals as a reference signal. The signal sensing unit outputs a difference signal according to the signal under test and the reference signal. The control unit determines an object position relative to the object sensing unit according to the difference signal. Additionally, a touch sensing apparatus and a method thereof are also provided.
Abstract:
An integrated circuit structure includes a semiconductor substrate and a high-voltage metal-oxide-semiconductor (HVMOS) device, which includes a first high-voltage well (HVW) region of a first conductivity type in the semiconductor substrate; a drain region of a second conductivity type opposite the first conductivity type in the semiconductor substrate and spaced apart from the first HVW region; a gate dielectric with at least a portion directly over the first HVW region; and a gate electrode over the gate dielectric. The gate dielectric includes a bottom gate oxide region; and a silicon nitride region over the bottom gate oxide region.
Abstract:
A socket connector for a digital camera module includes a base, a plurality of contact terminals, and a flex printed circuit board. The base includes a base body and a plurality of arms extending from the base. The contact terminals are mounted in the base, each contact terminal including an angled portion and a bent portion, the angled portion electronically connected to the digital cameral module. The flex printed circuit board is electronically connected to the bent portion.