Abstract:
A TNFR homolog, identified as DcR3, is provided. Nucleic acid molecules encoding DcR3, chimeric molecules and antibodies to DcR3 are also provided.
Abstract:
Disclosed herein is a system useful for detecting sequence differences (e.g., single-nucleotide polymorphisms) between genomes using data from a single hybridization with a genomic DNA microarray, such as a whole-genome array. The methods described herein can be used to detect, simply and inexpensively, differences in sequence among the genomes of individual members of a species, for example. In examples described herein, the system and methods were used to detect a variety of spontaneous single base-pair substitutions, insertions and deletions, and most (>90%) of the approximately 30,000 known single-nucleotide polymorphisms between two Saccharomyces cerevisiae strains. The system and methods were also used to elucidate the genetic basis of phenotypic variants and identify the small number of single base-pair changes accumulated during experimental evolution of yeast.
Abstract:
The present invention is directed to novel polypeptides having homology to the PRO533 protein and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention, and methods for producing the polypeptides of the present invention. The invention concerns compositions and methods for the diagnosis and treatment of neoplastic cell growth and proliferation in mammals, including humans. The invention is based on the identification of genes that are amplified in the genome of tumor cells. Such gene amplification is expected to be associated with the overexpression of the gene product and contribute to tumorigenesis and/or autocrine signaling. Accordingly, the proteins encoded by the amplified genes are believed to be useful targets for the diagnosis and/or treatment (including prevention) of certain cancers, and may act of predictors of the prognosis of tumor treatment. Furthermore, the compounds, compositions including antagonists and methods of the present invention are further expected to have therapeutic effect upon conditions characterized by FgF-19 modulation.
Abstract:
The present invention is directed to novel polypeptides having homology to the PRO533 protein and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention, and methods for producing the polypeptides of the present invention. The invention concerns compositions and methods for the diagnosis and treatment of neoplastic cell growth and proliferation in mammals, including humans. The invention is based on the identification of genes that are amplified in the genome of tumor cells. Such gene amplification is expected to be associated with the overexpression of the gene product and contribute to tumorigenesis and/or autocrine signaling. Accordingly, the proteins encoded by the amplified genes are believed to be useful targets for the diagnosis and/or treatment (including prevention) of certain cancers, and may act of predictors of the prognosis of tumor treatment. Furthermore, the compounds, compositions including antagonists and methods of the present invention are further expected to have therapeutic effect upon conditions characterized by FgF-19 modulation.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.