Abstract:
The present invention proposes a method and device for controlling uplink power. A central processing unit firstly determines a path loss generation mode for a user equipment according to a predetermined rule and then transmits an instruction to the user equipment, the instruction including the determined path loss generation mode so that the user equipment determines uplink power of fee user equipment according to the path loss generation mode. A user equipment acquires an instruction from a central processing unit to indicate a path loss generation mode of the user equipment, then determines a path loss of the user equipment according to the path loss generation mode indicated by the central processing unit, and then acquires uplink transmission power of the user equipment according to the determined path loss of the user equipment. With the inventive solution, a central processing unit may configure a path loss generation mode flexibly for a user equipment to accommodate different uplink CoMP scenarios and thereby achieve better CoMP performance.
Abstract:
Embodiments of the present invention disclose methods and apparatuses for dynamically triggering an uplink sounding reference signal for a carrier aggregation system, methods and apparatus for transmitting an uplink sounding reference signal for a carrier aggregation system. One embodiment discloses a method for dynamically configuring an uplink sounding reference signal for a carrier aggregation system, wherein an uplink schedule in the system comprises an SRS request field. The method comprises: pre-assigning mapping relationships between different values of the SRS request in the uplink schedule and joint coding of a carrier aggregation parameter and at least one user-specific RSR parameters, the carrier aggregation parameter indicating one or more carrier components; determining the carrier aggregation parameter and the at least one user-specific SRS parameter; assigning values to the SRS request field in the uplink schedule based on the pre-assigned mapping relationships, the determined carrier aggregation parameter and the at least one user-specific SRS parameter; transmitting the uplink schedule.
Abstract:
Assessing open circuit and short circuit defect levels in circuits implemented in state of the art ICs is difficult when using conventional test circuits, which are designed to assess continuity and isolation performance of simple structures based on individual design rules. Including circuit blocks from ICs in test circuits provides a more accurate assessment of defect levels expected in ICs using the circuit blocks. Open circuit defect levels may be assessed using continuity chains formed by serially linking continuity paths in the circuit blocks. Short circuit defect levels may be assessed by using parallel isolation test structures formed by linking isolated conductive elements in parallel to buses. Forming isolation connections on a high metal level enables location of shorted elements using voltage contrast on partially deprocessed or partially fabricated test circuits.
Abstract:
A method and a device for controlling battery heating is disclosed. The method comprises: starting battery heating when conditions for starting battery heating are met; and stopping battery heating when conditions for stopping battery heating are met. The conditions for stopping battery heating include at least one of the following: (a) an absorbed energy Q of the battery reaching a predetermined energy QSET; (b) a time period Ti during which a discharging current I of the battery maintains constant (c) the discharging current I starting to decrease when a predetermined time period TSET is reached; and (d) a heating time period T reaching a predetermined maximum heating time period Tmax. The method and the device consider multiple conditions, for example, temperature, discharging current, battery State-of-Charge, heating time, etc. to determine when to stop battery heating, which may further enhance the operating efficiency and lifespan of the battery.
Abstract:
A cell culture system including: a substrate, a substrate coating, one or more live cells, and an overlay source. The substrate coating and overlay can be laminin, and laminin•entactin complex, respectively. Alternatively, the substrate coating and overlay can be laminin•entactin complex, and laminin, respectively. The cell culture system can further include liquid media and a protective cover. A method for making and using the system in cell culture articles and culture methods, as defined herein, is also disclosed.
Abstract:
In a method of making a polymer structure on a substrate a layer of a first polymer, having a horizontal top surface, is applied to a surface of the substrate. An area of the top surface of the polymer is manipulated to create an uneven feature that is plasma etched to remove a first portion from the layer of the first polymer thereby leaving the polymer structure extending therefrom. A light emitting structure includes a conductive substrate from which an elongated nanostructure of a first polymer extends. A second polymer coating is disposed about the nanostructure and includes a second polymer, which includes a material such that a band gap exists between the second polymer coating and the elongated nanostructure. A conductive material coats the second polymer coating. The light emitting structure emits light when a voltage is applied between the conductive substrate and the conductive coating.
Abstract:
A method and apparatus for enabling a user to access a service provider is described. The user sends a request from a browser to a proxy server. The proxy server modifies the request by adding data (such as a URL) relating to a location of an identity provider able to provide user credentials for the user and forwards the modified request to the service provider. The modification of the access request may occur before the request is sent to the service provider or in response to an authentication request from the service provider. The data relating to the location of the identity provider may be provided as a header (e.g. an http header).
Abstract:
The present invention provides a drag reduction device between carriages of high-speed multiple units for reducing air drag, which belongs to the technical field of railway carriages. The technical solution of the present invention is as follows: a drag reduction device between carriages of high-speed multiple units comprises side windshields arranged on side edges of each end wall of a carriage body. Each of the side windshields includes a bar rubber capsule and a rubber capsule frame whose shapes are matched with a curve of the side edge of the end wall of the carriage body. The rubber capsule is connected with the end wall of the carriage body by the rubber capsule frame. The device is simple in structure, convenient and quick to install, and the multiple units need not to be broken up or made up. Furthermore, the device can effectively reduce the air drag resulting from the impact of the airflow on the end wall of the carriage body and increase the running speed of the train.
Abstract:
A plate mounted fuel assembly hold-down system that provides a defined channel for both the insertion and removal of reactor head mounted, fixed in-core detector instrumentation, provides a guided path for the fixed in-core detector during insertion, and shields the instrument shroud against coolant cross flow. The hold-down assembly includes a base plate that seats on the adapter plate of the fuel assembly and has openings that align with the control rod guide thimbles. A hollow sleeve extends through and below a central opening in the base plate to mate with the fuel assembly instrument thimble. The sleeve extends above the base plate and through and above an upper core plate of the reactor. A hold-down bar is slidably mounted on the sleeve and is restrained below the top of the sleeve. A spring is positioned around the sleeve and is captured between the hold-down bar and the base plate.
Abstract:
A method for reversibly, or irreversibly, altering the permeability of cells, tissues or other biological barriers, to molecules to be transported into or through these materials, through the application of acoustic energy, is provided. The acoustic energy is applied indirectly to the cells or tissue whose permeability is to be altered, at a frequency and intensity appropriate to alter the permeability to achieve the desired effect, such as the transport of endogenous or exogenous molecules and/or fluid, for drug delivery, measurement of analyte, removal of fluid, alteration of cell or tissue viability or alteration of structure of materials. In the preferred embodiment, the method includes applying the ultrasound in combination with devices for monitoring and/or implementing feedback controls.