Abstract:
A separating plate for a fuel cell includes first and second plates, each provided with a hydrogen channel, an oxygen channel, and a coolant channel. The first and second plates are attached to one another to form a main plate such that the first and second hydrogen, oxygen, and coolant channels compose main hydrogen, oxygen, and coolant channels, respectively. The main hydrogen and oxygen channels are fluidly isolated from each other. Distal ends of the main channels each communicate with a manifold through a communication passageway configured to supply hydrogen, oxygen, or coolant to a corresponding one of the main channels.
Abstract:
The present invention relates to a camera module and a manufacturing method thereof, in which both front and rear directions can be provided by improving the disadvantage of the existing camera module providing only one direction photographing. According to an embodiment of the present invention, the camera module includes first and second image sensor chips whose rear surfaces are adhered by a nonconductive bonding agent so that image region parts face opposite directions, a substrate that is connected to the first image sensor chip using bumps for signal connection and connected to the second image sensor chip using wires for signal connection, a through-hole being formed in the substrate under a region in which the first image sensor chip is mounted, an infrared-shielding filter installed in the through-hole of the substrate, first and second holders disposed on upper and lower sides of the substrate, and first and second lens disposed in the first and second holders, respectively.
Abstract:
The present invention relates to a method for synthesizing highly dispersed supported platinum catalyst. More particularly, the present invention relates to a method of synthesizing highly dispersed supported platinum catalyst comprising:dissolving a reducing agent in a solvent to produce a solution, dissolving a platinum chloride to the same solvent; adding a carbon support and platinum in a predetermined ratio to the above mixed solution, agitating the mixture, performing ultrasonic treatment, and performing heat treatment; and adding a HCl solution, agitating the mixture, separating the precipitates via filtration to produce a catalyst, and then washing the catalyst with distilled water, thereby obtaining an active highly dispersed supported platinum catalyst which has excellent electric charge activity, uniformly-sized platinum particles and relatively high specific surface area.
Abstract:
A method for successively recording data in a hybrid digital recorder. If an optical disc has no redundant area when a hybrid digital recorder in which an optical disc recorder and an HDD recorder, etc. are integrated in one body records an input data stream on the optical disc, the input data stream is temporarily stored in an HDD. If the optical disc is replaced with a new optical disc, the input data stream is temporarily stored in the HDD, and at the same time the data stream having been temporarily stored in the HDD is read and recorded on the new optical disc at a high speed. If all the data streams temporarily stored in the HDD are read and recorded on the new optical disc, the following data stream is recorded on the new optical disc. Therefore, an external input data stream such as a long-term broadcast program is distributed to a plurality of optical discs, and is stored on the optical discs without generating any lost data.
Abstract:
The present invention provides materials and methods for making proton conductive polymer, polymer membranes comprising the proton conductive polymer, membrane-electrode assemblies comprising the polymer membrane, and fuel cells comprising the membrane-electrode assemblies. The proton conductive polymer can be formed in the following manner: a) silicon inorganic polymers and silane compounds having amino groups are dissolved in a solvent to form a precursor; b) said precursor undergoes condensation polymerization to form a network of inorganic polymers; and c) the network and a reactant are contacted with one another to form the proton conductive polymer.
Abstract:
There are provided a test pattern of a semiconductor device and a test method using the same. The test pattern of the semiconductor device includes a conductive pattern disposed on a semiconductor substrate, and the conductive pattern includes a plurality of line regions, which are aligned in parallel, and spaced at a uniform interval, and a plurality of connecting regions for connecting the plurality of line regions in a zigzag shape. The test pattern includes a plurality of transistors electrically switching first ends of the adjacent line regions corresponding to the connecting region, and each transistor includes a source region, which is electrically connected to one end of one of the adjacent line regions, and a drain region, which is electrically connected to one end of the other one of the adjacent line regions. Further, a transistor selecting part is electrically connected to gates of the plurality of transistors, for selecting one of the plurality of transistors or a combination thereof.
Abstract:
In a method and structure for semiconductor failure analysis, the structure comprises: a plurality of analytic fields disposed on a predetermined area of a semiconductor device; semiconductor transistors arranged in each of the analytic fields, the semiconductor transistors arranged in an array; wordlines arranged on each of the plurality of the analytic fields, connecting the semiconductor transistors with each other in a first direction; and bitline structures on each of the plurality of the analytic fields, connecting the semiconductor transistors with each other in a second direction, wherein the bitline structures are configured in different patterns in each of the plurality of analytic fields.
Abstract:
A manufacturing method of Membrane-Electrode-Gasket Assemblies (MEGAs) used for polymer electrolyte fuel cells (PEFCs) is described wherein a polymer electrolyte membrane is formed directly on a electrode. A typical PEFC is constructed by assembling membrane-electrode assembly (MEA), gaskets, and separators. According to the invented method, PEFC is fabricated by assembling separators and MEGA, into which MEA and a gasket are integrated. Compared to the conventional MEA-gasket assemblies, MEGAs are easy to handle and can be mass-produced via a manufacturing process in a series. Moreover, employing MEGAs improves PEFC performance since the membrane thickness of MEGAs is lower than that of the conventional MEA-gasket assemblies.
Abstract:
A multicasting system and method for use in a shared memory-based switch that includes an input subqueue reading block for reading out data inputted thereto, selecting one bit from an output port bitmap at a time and outputting output port information of one bit and class information as a data stream together with an enable signal. The system also includes a queue number encoding block for encoding the bitmap type of output port information provided thereto from the input subqueue reading means, creating a queue number of the output subqueues based on the encoded output port information and the class information and outputting the same together with an enable signal; and an output subqueue writing block for writing an assigned non-use address of the output subqueues in a tail address of corresponding output subqueue, responsive to the information from the input subqueue reading means and replacing a subsequent tail address of the corresponding output subqueue with a newly assigned non-use address, thereby writing a corresponding pointer in the corresponding output subqueue.
Abstract:
A wavelength stabilization module having a light-receiving element array and a method of manufacturing the same are disclosed. The wavelength stabilization module having a laser diode which irradiates a laser beam at the front side and the rear side thereof comprises a collimator for paralleling the laser beam irradiated at the rear side; a beam splitter for splitting the laser beam passed through the collimator into the two directional laser beams; a light-receiving element for receiving one of the split laser beams; a filter for transmitting a specific wavelength of the other of the split laser beams; a light-receiving element array for receiving the laser beam passed through the filter; and a controller for controlling the output wavelength of the laser diode by using the signals output from the light-receiving element and the light-receiving element array, and the filter and the light-receiving element array are tilted at a predetermined angle with respect to the laser beam and lock the wavelength by using an incident angle dependency of the laser beam passed through the filter.