Abstract:
A semiconductor device includes a first field effect transistor including a source and a gate and disposed in a silicon carbide substrate; and a second field effect transistor including a drain and a gate and disposed in the substrate. The drain of the second field effect transistor connects to the source of the first field effect transistor. The gate of the second field effect transistor connects to the gate of the first field effect transistor.
Abstract:
The present invention relates to an improved process for the synthesis of enantiomerically pure 3-phenyl-3-hydroxypropylamine of formula I; more particularly the present invention relates to the said process using styrene; the synthetic strategy features a Sharpless asymmetric dihydroxylation (SAD) route to the target compound, using styrene, a readily accessible starting material gives the optically pure dihydroxy compound (ee >97%; the selective monotosylation of primary alcohol, nucleophilic displacement by cyano and subsequent reduction to amino group furnishes the desired 3-phenyl-3-hydroxypropylamine in enatiomerically pure form, a key intermediate in the synthesis of variety of oxetine related anti-depressant drugs.
Abstract:
Methods for preparing microparticles having reduced residual solvent levels. Microparticles are contacted with a non-aqueous washing system to reduce the level of residual solvent in the microparticles. Preferred non-aqueous washing systems include 100% ethanol and a blend of ethanol and heptane. A solvent blend of a hardening solvent and a washing solvent can be used to harden and wash microparticles in a single step, thereby eliminating the need for a post-hardening wash step.
Abstract:
A wireless controller is provided with at least two power supplies. The internal components of the controller are classified into at least two groups in accordance with the degrees of functional importance or the power consumptions of the components. The power supplies separately supply electric power to the respective groups of the components. Thus, the power supply to components with high degrees of functional importance or low power consumptions is ensured for a long time.
Abstract:
A diagnostic server software component for an automated banking machine is provided. The diagnostic server is operative to periodically retrieve diagnostic messages from a nonvolatile memory of the machine and store the diagnostic messages on the hard drive of the machine. The software is further operative responsive to communication from an external computing device to send diagnostic messages stored on the hard drive to an external computing device. The software may further be operative to route transaction diagnostic messages between the machine and a remote host banking system. The software may retrieve the diagnostic messages directly from a specified memory address of the nonvolatile memory. The software may periodically communicate with terminal control software of the machine to cause the terminal control software to retrieve the diagnostic messages from the nonvolatile memory.
Abstract:
A diagnostic server software component for an automated banking machine is provided. The diagnostic server is operative to periodically retrieve diagnostic messages from a nonvolatile memory of the machine and store the diagnostic messages on the hard drive of the machine. The software is further operative responsive to communication from an external computing device to send diagnostic messages stored on the hard drive to an external computing device. The software may further be operative to route transaction diagnostic messages between the machine and a remote host banking system. The software may retrieve the diagnostic messages directly from a specified memory address of the nonvolatile memory. The software may periodically communicate with terminal control software of the machine to cause the terminal control software to retrieve the diagnostic messages from the nonvolatile memory.
Abstract:
A channel layer 4 is formed on an n−-type epitaxial layer 2 and first gate areas 3, and field enhanced area(s) 5 and second gate areas 6 are formed on the first gate areas 3. Furthermore, n+-type source areas 7 and a third gate area 8 are formed on the second gate areas 6. These steps result in a device structure having a first J-FET with the n+-type source areas 7 and the n+-type substrate 1 as a source and drain and the first gate areas 3 at the right and left in the figure as a gate; and the second J-FET with the n+-type source areas 7 and the n+-type substrate 1 as a source and drain and the second gate areas 6 and the third gate area 8 as a gate. The first J-FET is normally-on, while the second J-FET is normally-off.
Abstract:
A semiconductor device, comprising: a semiconductor substrate comprising silicon carbide of a first conductivity type; a silicon carbide epitaxial layer of the first conductivity type; a first semiconductor region formed on the semiconductor substrate and comprising silicon carbide of a second conductivity type; a second semiconductor region formed on the first semiconductor region, comprising silicon carbide of the first conductivity type and separated from the semiconductor substrate of the first conductivity type by the first semiconductor region; a third semiconductor region formed on the semiconductor region, connected to the semiconductor substrate and the second semiconductor region, comprising silicon carbide of the first conductivity type, and of higher resistance than the semiconductor substrate; and a gate electrode formed on the third semiconductor region via an insulating layer; wherein the third semiconductor layer is depleted when no voltage is being applied to the gate electrode so that said semiconductor device has a normally OFF characteristic.
Abstract:
This invention is directed to a transducer comprising a lead-based single crystal wherein the crystal is diagonally oriented and has an effective coupling constant of at least 0.70. In one embodiment, the lead-based crystal has the formula Pb(B′B″)O3—PbTiO3 wherein B′ is Mg2+, Zn2+, Ni2+ or Sc3+ and B″ is Nb5+, Ta5+ or W6+. Preferably, the lead-based crystal has of the formula Pb(B′B″)O3—PbTiO3 where B′ is Mg2+, Zn2+, Sc3+ and B″ is Nb5+ or more specifically Pb(Mg1/3Nb2/3)O3—PbTiO3 (“PMN—PT”), Pb(Zn1/3Nb2/3)O3—PbTiO3 (“PZN—PT”), and Pb(Sc1/3Nb2/3)O3—PbTiO3 (“PSN—PT”). The invention also includes a transducer comprising a plurality of lead-based single crystal transducers. In one embodiment the ultrasonic probe comprising one or more piezoelectric components having surfaces that function as transmitting and/or receiving elements; and electrodes placed upon opposite surfaces of the elements, and wherein each lead based piezoelectric component as described above. In addition, the invention includes improved materials for reduced spurious modes. Furthermore, the invention includes diagonally oriented lead-based transducers.
Abstract:
A spare capacity planning tool for planning spare capacity in a transport network during a multiple-span failure following a single failure event. The spare capacity planning tool simulates restoration of a transport network regardless of the sequence of failures. The system and method utilize a permutation reducer to minimize the number of sequences to be verified during simulated or actual restoration activities. The permutation reducer reduces the number of sequences to to during simulated restoration activities to a first order function rather than a factorial function of the number of failed spans.