Abstract:
The present invention relates to a nanoliposome comprising a liposome membrane containing esterified lecithin, and one or more physiologically active ingredients included in inner space of the liposome membrane; a method for preparing the same; and a composition for preventing or treating skin diseases, comprising the same. The nanoliposome according to the present invention has long-term stability and uniformity, and so can be used to prepare a composition for skin having excellent moisturizing and penetrating properties, such as cosmetics, medicament for treating skin diseases, or the like. In particular, the present composition for preventing or treating skin diseases comprises epidermal growth factor included in the nanoliposome, thereby showing an excellent effect of stimulating skin-penetration and good pharmaceutical stability. Also, the esterified lecithin used in preparing liposome can provide effects of softening skin and stimulating skin-penetration, thereby enhancing the penetration of epidermal growth factor and natural extract into skin, as well as additional moisturizing effect which is advantageous in treating skin diseases. Further, since the present composition comprises nanoliposome prepared by containing esterified lecithin in liposome membrane, the conventional problems of heating and dispersing active ingredients at high temperature (70° C. or more), low stability and uniformity, or the like can be solved.
Abstract:
A liquid crystal display includes an insulating substrate, gate and data lines formed on the substrate to define pixel areas, or collectively a display area. Gate signal interconnection wires are formed at a corner portion of the substrate outside the display area to transmit gate electrical signals, and provided with gate signal interconnection lines and first and second gate signal interconnection pads connected to both ends of the gate signal interconnection lines. A gate insulating layer, and a protective layer are further formed on the substrate, and provided with first and second contact holes exposing the first and second gate signal interconnection pads. Gate and data signal transmission films are attached to the substrate, and provided with first and second gate signal leads and first and second gate signal wires. The first and second gate signal leads are connected to the first and second gate signal interconnection pads through the first and second contact holes. The first or the second gate signal lead completely covers the first or the second contact hole at least in the longitudinal direction of the lead.
Abstract:
The present invention relates to a method and system for photocatalytically decomposing organic pollutants using the electromotive force of a solar cell. The present invention provides a method and system for decomposing organic pollutants, which can greatly increase the rate of decomposition of organic pollutants at low cost by combining a photocatalytic organic pollutant decomposition device, capable of decomposing organic pollutants using light energy, with a solar cell, capable of applying an external voltage to the photocatalytic organic pollutant decomposition device using light energy.
Abstract:
A semiconductor device includes first gate structures, second gate structures, a first capping layer pattern, a second capping layer pattern, first spacers, second spacers, third spacers, and a substrate having first impurity regions and second impurity regions. The first gate structures are arranged on the substrate at a first pitch. The second gate structures are arranged on the substrate at a second pitch greater than the first pitch. The first capping layer pattern has segments extending along side faces of the first gate structures and segments extending along the substrate. The second capping layer pattern has segments extending along the second gate structures and segments extending along the substrate. The first spacers and the second spacers are stacked on the second capping layer pattern. The third spacers are formed on the first capping layer pattern.
Abstract:
A liquid crystal display device having first and second substrates that face each other, a liquid crystal layer interposed between the first and second substrates, a thin film transistor (TFT) formed on the first substrate, and a pixel electrode electrically connected with the TFT and including a reflective portion having a reflective electrode and a transmissive portion having a transmissive electrode. Furthermore, the reflective electrode includes a conductive polymer material.
Abstract:
There is provided a polydiacetylene supramolecule comprising diacetylene molecules, capable of immobilizing a receptor molecule having a thiol group. Since the polydiacetylene supramolecule has a receptor immobilized thereon having a thiol group, for example, an antibody, and thus shows color transition when reacting with a sample, an antigen can be detected through specific color transition of the polydiacetylene when employing in a receptor-ligand reaction, for example, an antibody-antigen reaction.
Abstract:
A method for manufacturing the same, wherein the monolithic ink-jet printhead includes a manifold for supplying ink, an ink chamber having a hemispheric shape, and an ink channel formed monolithically on a substrate; a silicon oxide layer, in which a nozzle for ejecting ink is centrally formed in the ink chamber, is deposited on the substrate; a heater having a ring shape is formed on the silicon oxide layer to surround the nozzle; a MOS integrated circuit is mounted on the substrate to drive the heater and includes a MOSFET and electrodes connected to the heater. The silicon oxide layer, the heater, and the MOS integrated circuit are formed monolithically on the substrate. Additionally, a DLC coating layer having a high hydrophobic property and high durability is formed on an external surface of the printhead.
Abstract:
The present invention relates to 6-methylpyridine derivatives useful as an antiviral agent. More particularly, the present invention relates to novel 6-methylpyridine derivatives having an excellent inhibitory effect on replication of Hepatitis C virus (HCV), or pharmaceutically acceptable salts thereof, to a method for preparing thereof, and to an antiviral pharmaceutical composition comprising the compound as an active ingredient. The 6-methylpyridine derivatives of the present invention have an excellent inhibitory effect on replication of hepatitis C virus and thus can be advantageously used as a therapeutic or prophylactic agent of hepatitis C
Abstract:
An LCD according to an embodiment of the present invention includes: a first substrate; a first electrode disposed on the first substrate; a second substrate facing the first substrate; a second electrode disposed on the second substrate; a liquid crystal layer disposed between the first electrode and the second electrode; and a first alignment film attached on the first electrode and having a position-dependent thickness that achieves variations of the dielectric constant of from 1 to about 50.
Abstract:
The present invention relates to 6-methylpyridine derivatives useful as an antiviral agent. More particularly, the present invention relates to novel 6-methylpyridine derivatives having an excellent inhibitory effect on replication of Hepatitis C virus (HCV), or pharmaceutically acceptable salts thereof, to a method for preparing thereof, and to an antiviral pharmaceutical composition comprising the compound as an active ingredient. The 6-methylpyridine derivatives of the present invention have an excellent inhibitory effect on replication of hepatitis C virus and thus can be advantageously used as a therapeutic or prophylactic agent of hepatitis C.