Methodology for improving device performance prediction from effects of active area corner rounding
    91.
    发明授权
    Methodology for improving device performance prediction from effects of active area corner rounding 失效
    从活动区域四舍五入的角度提高设备性能预测的方法

    公开(公告)号:US08296691B2

    公开(公告)日:2012-10-23

    申请号:US11971015

    申请日:2008-01-08

    IPC分类号: G06F17/50 G06F9/45 G06G7/48

    CPC分类号: G06F17/5036

    摘要: A system and method for modeling a semiconductor transistor device structure having a conductive line feature of a designed length connected to a gate of a transistor device in a circuit to be modeled, the transistor including an active device (RX) area over which the gate is formed and over which the conductive line feature extends. The method includes providing an analytical model representation including a function for modeling a lithographic flare effect impacting the active device area width; and, from the modeling function, relating an effective change in active device area width (deltaW adder) as a function of a distance from a defined edge of the RX area. Then, transistor model parameter values in a transistor compact model for the device are updated to include deltaW adder values to be added to a built-in deltaW value. A netlist used in a simulation includes the deltaW adder values to more accurately describe the characteristics of the transistor device being modeled including modeling of lithographic corner rounding effect on transistor device parametrics.

    摘要翻译: 一种用于建模半导体晶体管器件结构的系统和方法,所述半导体晶体管器件结构具有设计长度的导线特征,所述导线特征与待建模的电路中的晶体管器件的栅极连接,所述晶体管包括有源器件(RX) 形成并且其上延伸有导线特征。 该方法包括提供分析模型表示,其包括用于建模影响有源器件区域宽度的光刻火炬效应的功能; 并且从建模功能将有源器件区域宽度(deltaW加法器)的有效变化与距离RX区域的限定边缘的距离的函数相关联。 然后,器件的晶体管紧凑型模型中的晶体管模型参数值被更新为包括要添加到内置deltaW值的ΔW加法器值。 在模拟中使用的网表包括deltaW加法器值,以更精确地描述被建模的晶体管器件的特性,包括对晶体管器件参数的光刻拐角舍入效应的建模。

    REDUCING DISLOCATION FORMATION IN SEMICONDUCTOR DEVICES THROUGH TARGETED CARBON IMPLANTATION
    92.
    发明申请
    REDUCING DISLOCATION FORMATION IN SEMICONDUCTOR DEVICES THROUGH TARGETED CARBON IMPLANTATION 失效
    通过目标碳植入减少半导体器件中的分离形成

    公开(公告)号:US20120184075A1

    公开(公告)日:2012-07-19

    申请号:US13009020

    申请日:2011-01-19

    IPC分类号: H01L21/336 H01L21/84

    摘要: A method of forming a semiconductor device includes implanting an amorphizing species into a crystalline semiconductor substrate, the substrate having a transistor gate structure formed thereupon. Carbon is implanted into amorphized regions of the substrate, with specific implant conditions tailored such that the peak concentration of carbon species coincides with the end of the stacking faults, where the stacking faults are created during the recrystallization anneal. The implanted carbon pins partial dislocations so as to prevent the dislocations from disassociating from the end of the stacking faults and moving to a region in the substrate directly below the transistor gate structure. This removes the defects, which cause device leakage fail.

    摘要翻译: 形成半导体器件的方法包括将非晶化物质注入晶体半导体衬底中,所述衬底具有在其上形成的晶体管栅极结构。 碳被植入到基底的非晶化区域中,其特定的植入条件被定制,使得碳类的峰值浓度与堆垛层错的结束一致,其中在重结晶退火期间产生堆垛层错。 植入的碳引脚部分位错,以防止位错从堆垛层错的末端脱离,并移动到晶体管栅极结构正下方的衬底区域。 这消除了导致设备泄漏失败的缺陷。

    Body contact structures and methods of manufacturing the same
    93.
    发明授权
    Body contact structures and methods of manufacturing the same 有权
    身体接触结构及其制造方法

    公开(公告)号:US08053325B1

    公开(公告)日:2011-11-08

    申请号:US12782320

    申请日:2010-05-18

    IPC分类号: H01L21/336

    CPC分类号: H01L29/78615 H01L29/66772

    摘要: A body contact structure which reduce parasitic capacitance and improves body resistance of a device and methods of manufacture. The method includes forming a gate insulator material and gate electrode material on a substrate. The method further includes patterning the gate insulator material and the gate electrode material to form a gate structure having a shape with a first portion isolated from a second portion. The method further includes forming source and drain regions on sides of the first portion and a body contact at a side and under an area of the second portion, and forming an interlevel dielectric within a space that isolates the first portion from the second portion of the gate structure, and over the gate structure, source and drain regions and the body contact.

    摘要翻译: 减少寄生电容并改善器件的体电阻和制造方法的体接触结构。 该方法包括在基板上形成栅极绝缘体材料和栅电极材料。 该方法还包括图案化栅极绝缘体材料和栅电极材料以形成具有与第二部分隔离的第一部分的形状的栅极结构。 该方法还包括在第一部分的侧面上形成源极和漏极区域,在第二部分的侧面和下面区域形成体接触,以及在隔离第一部分与第二部分的第二部分的空间内形成层间电介质 栅极结构,以及栅极结构,源极和漏极区域以及身体接触。

    SELF-ALIGNED CONTACTS FOR NANOWIRE FIELD EFFECT TRANSISTORS
    94.
    发明申请
    SELF-ALIGNED CONTACTS FOR NANOWIRE FIELD EFFECT TRANSISTORS 有权
    用于纳米效应晶体管的自对准接触

    公开(公告)号:US20110133165A1

    公开(公告)日:2011-06-09

    申请号:US12631213

    申请日:2009-12-04

    IPC分类号: H01L29/66 H01L21/336

    摘要: A method for forming a nanowire field effect transistor (FET) device includes forming a nanowire over a semiconductor substrate, forming a gate structure around a portion of the nanowire, forming a capping layer on the gate structure; forming a first spacer adjacent to sidewalls of the gate and around portions of nanowire extending from the gate, forming a hardmask layer on the capping layer and the first spacer, removing exposed portions of the nanowire, epitaxially growing a doped semiconductor material on exposed cross sections of the nanowire to form a source region and a drain region, forming a silicide material in the epitaxially grown doped semiconductor material, and forming a conductive material on the source and drain regions.

    摘要翻译: 形成纳米线场效应晶体管(FET)器件的方法包括在半导体衬底上形成纳米线,在纳米线的一部分周围形成栅极结构,在栅极结构上形成覆盖层; 形成邻近所述栅极的侧壁和从所述栅极延伸的纳米线的周围的第一间隔物,在所述覆盖层和所述第一间隔物上形成硬掩模层,去除所述纳米线的暴露部分,在暴露的横截面上外延生长掺杂半导体材料 以形成源极区和漏极区,在外延生长的掺杂半导体材料中形成硅化物材料,并在源极和漏极区上形成导电材料。

    Semiconductor structure and method of forming the structure
    95.
    发明授权
    Semiconductor structure and method of forming the structure 有权
    半导体结构及其形成方法

    公开(公告)号:US07932144B2

    公开(公告)日:2011-04-26

    申请号:US12685027

    申请日:2010-01-11

    IPC分类号: H01L21/8234

    摘要: Disclosed are embodiments of an n-FET structure with silicon carbon S/D regions completely contained inside amorphization regions and with a carbon-free gate electrode. Containing carbon within the amorphization regions, ensures that all of the carbon is substitutional following re-crystallization to maximize the tensile stress imparted on channel region. The gate stack is capped during carbon implantation so the risk of carbon entering the gate stack and degrading the conductivity of the gate polysilicon and/or damaging the gate oxide is essentially eliminated. Thus, the carbon implant regions can be formed deeper. Deeper S/D carbon implants which are completely amorphized and then re-crystallized provide greater tensile stress on the n-FET channel region to further optimize electron mobility. Additionally, the gate electrode is uncapped during the n-type dopant process, so the n-type dopant dose in the gate electrode can be at least great as the dose in the S/D regions.

    摘要翻译: 公开了具有完全包含在非晶化区域内和具有无碳栅电极的硅碳S / D区域的n-FET结构的实施方案。 在非晶化区域内含有碳,确保在再结晶后所有碳都是取代的,以最大限度地增加通道区域上施加的拉伸应力。 在碳注入期间,栅极堆叠被封盖,从而基本上消除了碳进入栅极堆叠并降低栅极多晶硅的导电性和/或损坏栅极氧化物的风险。 因此,可以更深地形成碳注入区域。 完全非晶化然后再结晶的深S / D碳植入物在n-FET沟道区域上提供更大的拉伸应力,以进一步优化电子迁移率。 此外,在n型掺杂剂处理期间,栅电极未被封装,因此栅电极中的n型掺杂剂剂量可以至少大于S / D区域中的剂量。

    Halo-first ultra-thin SOI FET for superior short channel control
    96.
    发明授权
    Halo-first ultra-thin SOI FET for superior short channel control 有权
    先进的超薄SOI FET,用于优异的短通道控制

    公开(公告)号:US07859061B2

    公开(公告)日:2010-12-28

    申请号:US12538111

    申请日:2009-08-08

    摘要: Superior control of short-channel effects for an ultra-thin semiconductor-on-insulator field effect transistor (UTSOI-FET) is obtained by performing a halo implantation immediately after a gate reoxidation step. An offset is then formed and thereafter an extension implantation process is performed. This sequence of processing steps ensures that the halo implant is laterally separated from the extension implant by the width of the offset spacer. This construction produces equivalent or far superior short channel performance compared to conventional UTSOI-FETs. Additionally, the above processing steps permit the use of lower halo doses as compared to conventional processes.

    摘要翻译: 通过在栅极再氧化步骤后立即进行晕圈注入,可获得对超薄绝缘体上的场效应晶体管(UTSOI-FET)的短沟道效应的优异控制。 然后形成偏移,然后执行延伸注入工艺。 这个处理步骤的顺序确保了晕轮植入物与延伸植入物横向分离偏移间隔物的宽度。 与传统的UTSOI-FET相比,这种结构产生等效或远优于短沟道性能。 另外,与常规方法相比,上述处理步骤允许使用较低的光晕剂量。

    OPC trimming for performance
    98.
    发明授权
    OPC trimming for performance 失效
    OPC修剪性能

    公开(公告)号:US07627836B2

    公开(公告)日:2009-12-01

    申请号:US11164044

    申请日:2005-11-08

    IPC分类号: G06F17/50

    CPC分类号: G06F17/5068

    摘要: An iterative timing analysis is analytically performed before a chip is fabricated, based on a methodology using optical proximity correction techniques for shortening the gate lengths and adjusting metal line widths and proximity distances of critical time sensitive devices. The additional mask is used as a selective trim to form shortened gate lengths or wider metal lines for the selected, predetermined transistors, affecting the threshold voltages and the RC time constants of the selected devices. Marker shapes identify a predetermined subgroup of circuitry that constitutes the devices in the critical timing path. The analysis methodology is repeated as often as needed to improve the timing of the circuit with shortened designed gate lengths and modified RC timing constants until manufacturing limits are reached. A mask is made for the selected critical devices using OPC techniques.

    摘要翻译: 基于使用光学邻近校正技术的方法,在芯片制造之前分析地执行迭代时序分析,以缩短栅极长度并调整关键时间敏感器件的金属线宽度和接近距离。 附加掩模用作选择性修整以形成用于所选择的预定晶体管的缩短的栅极长度或更宽的金属线,影响所选器件的阈值电压和RC时间常数。 标记形状识别构成关键定时路径中的装置的电路的预定子组。 根据需要经常重复分析方法,以在缩短设计的栅极长度和修改的RC定时常数的情况下改善电路的时序,直到达到制造限值。 使用OPC技术为所选的关键设备制作掩码。

    COMPACT MODEL METHODOLOGY FOR PC LANDING PAD LITHOGRAPHIC ROUNDING IMPACT ON DEVICE PERFORMANCE
    99.
    发明申请
    COMPACT MODEL METHODOLOGY FOR PC LANDING PAD LITHOGRAPHIC ROUNDING IMPACT ON DEVICE PERFORMANCE 有权
    用于PC路面平台的简化模型方法对设备性能的影响

    公开(公告)号:US20090177448A1

    公开(公告)日:2009-07-09

    申请号:US11970990

    申请日:2008-01-08

    IPC分类号: G06F17/50

    CPC分类号: G06F17/5036

    摘要: A method and computer program product for modeling a semiconductor transistor device structure having an active device area, a gate structure, and including a conductive line feature connected to the gate structure and disposed above the active device area, the conductive line feature including a conductive landing pad feature disposed near an edge of the active device area in a circuit to be modeled. The method includes determining a distance between an edge defined by the landing pad feature to an edge of the active device area, and, from modeling a lithographic rounding effect of the landing pad feature, determining changes in width of the active device area as a function of the distance between an edge defined by the landing pad feature to an edge of the active device area. From these data, an effective change in active device area width (deltaW adder) is related to the determined distance. Then, transistor model parameter values in a transistor compact model are updated for the transistor device to include deltaW adder values to be added to a built-in deltaW value. A netlist used in a device simulation may then include the deltaW adder values to quantify the influence of the lithographic rounding effect of the landing pad feature.

    摘要翻译: 一种用于对具有有源器件区域,栅极结构并且包括连接到栅极结构并且设置在有源器件区域上方的导线特征来建模半导体晶体管器件结构的方法和计算机程序产品,所述导电线特征包括导电层 衬垫特征设置在待建模的电路中的有源器件区域的边缘附近。 该方法包括确定由着陆焊盘特征限定的边缘与有源器件区域的边缘之间的距离,以及通过建模着陆焊盘特征的光刻圆整效应,确定作为功能的有源器件区域的宽度变化 由着陆垫特征限定的边缘到活动设备区域的边缘之间的距离。 根据这些数据,有源器件区域宽度(deltaW加法器)的有效变化与确定的距离有关。 然后,晶体管紧凑型模型中的晶体管模型参数值被更新为晶体管器件,以包括要添加到内置deltaW值的ΔW加法器值。 在设备仿真中使用的网表可以包括deltaW加法器值,以量化着陆垫特征的光刻舍入效应的影响。

    DUAL GATE DIELECTRIC SRAM
    100.
    发明申请
    DUAL GATE DIELECTRIC SRAM 失效
    双门电介质SRAM

    公开(公告)号:US20080303105A1

    公开(公告)日:2008-12-11

    申请号:US11759538

    申请日:2007-06-07

    IPC分类号: H01L29/76 H01L21/44

    摘要: An SRAM cell structure containing a PFET gate dielectric having a thicker effective oxide thickness (EOT) than an NFET gate dielectric and methods of manufacturing the same is provided. The PFET gate dielectric and the NFET gate dielectric may be silicon oxynitride layers, CVD oxide layers, or high-K dielectric layers having different thicknesses. The PFET gate dielectric may be a stack of two dielectric layers and the NFET gate dielectric may be one of the two dielectric layers. The greater EOT of the PFET gate dielectric produces reduction of the on-current of the pull-up PFETs for optimal SRAM performance.

    摘要翻译: 提供了包含具有比NFET栅极电介质更厚的有效氧化物厚度(EOT)的PFET栅极电介质的SRAM单元结构及其制造方法。 PFET栅极电介质和NFET栅极电介质可以是氮氧化硅层,CVD氧化物层或具有不同厚度的高K电介质层。 PFET栅极电介质可以是两个电介质层的堆叠,并且NFET栅极电介质可以是两个电介质层中的一个。 PFET栅极电介质的更大的EOT产生上拉PFET的导通电流的降低,以获得最佳的SRAM性能。