摘要:
An iterative timing analysis is analytically performed before a chip is fabricated, based on a methodology using optical proximity correction techniques for shortening the gate lengths and adjusting metal line widths and proximity distances of critical time sensitive devices. The additional mask is used as a selective trim to form shortened gate lengths or wider metal lines for the selected, predetermined transistors, affecting the threshold voltages and the RC time constants of the selected devices. Marker shapes identify a predetermined subgroup of circuitry that constitutes the devices in the critical timing path. The analysis methodology is repeated as often as needed to improve the timing of the circuit with shortened designed gate lengths and modified RC timing constants until manufacturing limits are reached. A mask is made for the selected critical devices using OPC techniques.
摘要:
An iterative timing analysis is analytically performed before a chip is fabricated, based on a methodology using optical proximity correction techniques for shortening the gate lengths and adjusting metal line widths and proximity distances of critical time sensitive devices. The additional mask is used as a selective trim to form shortened gate lengths or wider metal lines for the selected, predetermined transistors, affecting the threshold voltages and the RC time constants of the selected devices. Marker shapes identify a predetermined subgroup of circuitry that constitutes the devices in the critical timing path. The analysis methodology is repeated as often as needed to improve the timing of the circuit with shortened designed gate lengths and modified RC timing constants until manufacturing limits are reached. A mask is made for the selected critical devices using OPC techniques.
摘要:
Methods for preventing cavitation in high aspect ratio dielectric regions in a semiconductor device, and the device so formed, are disclosed. The invention includes depositing a first dielectric in the high aspect ratio dielectric region between a pair of structures, and then removing the first dielectric to form a bearing surface adjacent each structure. The bearing surface prevents cavitation of the interlayer dielectric that subsequently fills the high aspect ratio region.
摘要:
Methods for preventing cavitation in high aspect ratio dielectric regions in a semiconductor device, and the device so formed, are disclosed. The invention includes depositing a first dielectric in the high aspect ratio dielectric region between a pair of structures, and then removing the first dielectric to form a bearing surface adjacent each structure. The bearing surface prevents cavitation of the interlayer dielectric that subsequently fills the high aspect ratio region.
摘要:
Methods for preventing cavitation in high aspect ratio dielectric regions in a semiconductor device, and the device so formed, are disclosed. The invention includes depositing a first dielectric in the high aspect ratio dielectric region between a pair of structures, and then removing the first dielectric to form a bearing surface adjacent each structure. The bearing surface prevents cavitation of the interlayer dielectric that subsequently fills the high aspect ratio region.
摘要:
A field programmable gate array (FPGA) includes configuration RAM (CRAM) including at least one non-hardened portion and at least one hardened portion having an SER resilience greater than an SER resilience of the non-hardened portion.
摘要:
An alpha particle blocking structure and method of making the structure. The structure includes: a semiconductor substrate; a set of interlevel dielectric layers stacked from a lowermost interlevel dielectric layer closest to the substrate to a uppermost interlevel dielectric layer furthest from the substrate, each interlevel dielectric layer of the set of interlevel dielectric layers including electrically conductive wires, top surfaces of the wires substantially coplanar with top surfaces of corresponding interlevel dielectric layers; an electrically conductive terminal pad contacting a wire pad of the uppermost interlevel dielectric layer; an electrically conductive plating base layer contacting a top surface of the terminal pad; and a copper block on the plating base layer.
摘要:
A method for reducing single event upsets in an integrated circuit includes the step of providing a plurality of levels within the integrated circuit, wherein the plurality of levels within the integrated circuit are in a stacked arrangement. The method also includes the step of providing a plurality of metal fill patterns within each of the plurality of levels within the integrated circuit. The method further includes the step of placing the plurality of metal fill patterns within at least one of the plurality of levels in a pattern such that a line of sight towards an active silicon layer does not exist within the stacked arrangement of the plurality of levels, thereby increasingly absorbing ionizing radiation particles, and thereby reducing single event upsets in the integrated circuit.
摘要:
A D-Cache SRAM cell having a modified design in schematic and layout that exhibits increased symmetry from the circuit schematic and the physical cell layout perspectives. That is, the SRAM cell includes two read ports and minimizes asymmetry by provisioning one read port on a true side and one on the complement side. Asymmetry is additionally minimized in layout as cross coupling on both the true and complement sides rises up one level by providing from the local interconnect level a via connection to a M1 or metallization level. Moreover, the distance between the local interconnect (MC) and the gate conductor structure (PC) has been enlarged and equalized for each of the pFETs in the cross-latched SRAM cell. As a result, the SRAM cell has been rendered insensitive to overlay (local interconnect processing too close) by maximizing this MC-PC distance.
摘要:
Accordingly, the present invention provides a double gated transistor and a method for forming the same that results in improved device performance and density. The preferred embodiment of the present invention uses provides a double gated transistor with asymmetric gate doping, where one of the double gates is doped degenerately n-type and the other degenerately p-type. By doping on of the gates n-type, and the other p-type, the threshold voltage of the resulting device is improved. In particular, by asymmetrically doping the two gates, the resulting transistor can, with adequate doping of the body, have a threshold voltage in a range that enables low-voltage CMOS operation. For example, a transistor can be created that has a threshold voltage between 0V and 0.5V for nFETs and between 0 and −0.5V for pFETs.