Abstract:
The present disclosure provides a transparent display panel, its manufacturing method and a transparent display device. The transparent display panel comprises a first substrate, a second substrate, a third substrate, a first liquid crystal layer and a plurality of first pixels located between the first substrate and the second substrate; and a second liquid crystal layer and a plurality of second pixels located between the second substrate and the third substrate; the first liquid crystal layer has a larger refractive index than the first substrate and the second substrate; and the second liquid crystal layer has a larger refractive index than the third substrate and the second substrate; after applying voltages to one first pixel and one second pixel, a long axial direction of the first liquid crystal molecules is not parallel to a long axial direction of the second liquid crystal molecules; and at least part of a side surface of the transparent display panel is a light-entering surface.
Abstract:
A layer stacking structure, an array substrate including the layer stacking structure and a display device including the array substrate are provided. The layer stacking structure, including: a base substrate; a first conductive layer, a first insulating layer, a second conductive layer and a second insulating layer sequentially stacked in a direction away from the base substrate, wherein, the first conductive layer and the second conductive layer overlap with each other in an overlapping region, a recessed portion arranged in the overlapping region, wherein, the first conductive layer and the second conductive layer are electrically connected with each other through the conductive connection component.
Abstract:
The present disclosure provides a display device having a light-emitting side and a non-light-emitting side. The display device includes a light-emitting layer; and a quantum dot sealant layer on the light-emitting side of the display device. The quantum dot sealant layer includes red quantum dots for emitting red light.
Abstract:
A liquid crystal panel and a liquid crystal display device are provided. The liquid crystal panel includes a color filter substrate and an array substrate disposed opposite to each other, and a liquid crystal layer (170) located between the color filter substrate and the array substrate, and liquid crystals in the liquid crystal layer are vertically aligned. A protrusive structure (150, 55) is provided on the color filter substrate and/or the array substrate, and a recess (160, 65) is provided around the protrusive structure (150, 55).
Abstract:
The present invention provides a double-sided touch control substrate, a double-sided touch control device and a double-sided touch control display device. The double-sided touch control substrate comprises a base having a first side and a second side opposite to each other, a first touch control mechanism is provided on the first side, and a second touch control mechanism is provided on the second side. Both the first touch control mechanism and the second touch control mechanism are connected to a touch control driving unit through a switching mechanism, and the switching mechanism enables the first touch control mechanism and the second touch control mechanism to share the touch control driving unit in a time-sharing manner. With the double-sided touch control substrate, a streamlined touch-control device that is not limited to single-sided touch control is implemented by using fewer resources.
Abstract:
An array substrate, a display panel and a display apparatus are disclosed. The array substrate includes a plurality of gate lines (10; 50) and a plurality of data lines (30; 51), and pixel units arranged in an array. Each of the pixel units includes one pixel electrode (41; 42) and one thin film transistor, the data line (30; 51) serve as a source electrode (31; 311) of the thin film transistor, the gate line (10; 50) serve as a gate electrode (11) of the thin film transistor, and a drain electrode (32; 321; 322) of the thin film transistor is electrically connected to the pixel electrode (41; 42), at least one of the gate lines (10; 50) and the data lines (30; 51) has a recess (363; 364) provided thereon aligned with a spacer for fixing. With the recess (363; 364), the post spacer is prevented from moving to affect the display region when the substrate is bent and deformed under an external pressure.
Abstract:
A substrate and a display device are disclosed. The substrate includes a plurality of common electrode lines that are spaced at an interval, configured for providing corresponding pixel units with a common voltage; at least two connecting lines, each of which is located in a display region, and which are configured for achieving mutual electrical connection between at least two of the common electrode lines that are adjacent.
Abstract:
A barrier film layer, a photoelectric device comprising the barrier film layer and a manufacturing method of the photoelectric device are provided. A material forming the barrier film layer includes a topological insulator, and the barrier film layer is formed on a surface of an base plate which is patterned. In this way, a better package of the photoelectric device can be achieved.
Abstract:
An array substrate, a manufacturing method thereof and a display device are provided. The array substrate comprises a plurality of gate lines (102) and a plurality of data lines (101); a region defined by adjacent data lines (101) and adjacent gate lines (102) is a pixel unit; the pixel unit includes a common electrode line (103), a pixel electrode (104), a thin film transistor (105) and an auxiliary electrode (202); a first end of the auxiliary electrode (202) is electrically connected with a drain electrode (203) of the thin film transistor (105); and a second end of the auxiliary electrode (202) is electrically connected with the pixel electrode (104). The array substrate is used for enhancing an electric field within the peripheral range of the pixel electrode (104) of the pixel unit and avoiding the phenomenon of light leakage at an edge of the pixel unit.
Abstract:
An array substrate and a display device are provided. A common electrode line with the same extending direction as a gate line is disposed at one end near a thin film transistor, and forms a storage capacitor with a drain electrode of the thin film transistor. As compared with the case in the prior art that a common electrode line and a thin film transistor in an array substrate are disposed at both ends of a pixel, respectively, and it is necessary to separately provide a storage capacitance electrode useful for forming a storage capacitor with the common electrode line, the pixel region occupied by the thin film transistor and the common electrode line can be effectively decreased. Thus, the aperture ratio is increased, and the display brightness of an IPS liquid crystal display device is enhanced.