摘要:
Embodiments of the present disclosure describe structures and techniques to increase carrier injection velocity for integrated circuit devices. An integrated circuit device includes a semiconductor substrate, a first barrier film coupled with the semiconductor substrate, a quantum well channel coupled to the first barrier film, the quantum well channel comprising a first material having a first bandgap energy, and a source structure coupled to launch mobile charge carriers into the quantum well channel, the source structure comprising a second material having a second bandgap energy, wherein the second bandgap energy is greater than the first bandgap energy. Other embodiments may be described and/or claimed.
摘要:
The present disclosure relates to the field of microelectronic transistor fabrication and, more particularly, to the fabrication of a tunnel field effect transistor having an improved on-current level without a corresponding increasing the off-current level, achieved by the addition of a transition layer between a source and an intrinsic channel of the tunnel field effect transistor.
摘要:
Embodiments of the present disclosure describe structures and techniques to increase carrier injection velocity for integrated circuit devices. An integrated circuit device includes a semiconductor substrate, a first barrier film coupled with the semiconductor substrate, a quantum well channel coupled to the first barrier film, the quantum well channel comprising a first material having a first bandgap energy, and a source structure coupled to launch mobile charge carriers into the quantum well channel, the source structure comprising a second material having a second bandgap energy, wherein the second bandgap energy is greater than the first bandgap energy. Other embodiments may be described and/or claimed.
摘要:
A microelectronic device includes a tunneling pocket within an asymmetrical semiconductive body including source- and drain wells. The tunneling pocket is formed by a self-aligned process by removing a dummy gate electrode from a gate spacer and by implanting the tunneling pocket into the semiconductive body or into an epitaxial film that is part of the semiconductive body.
摘要:
A microelectronic device includes a tunneling pocket within an asymmetrical semiconductive body including source- and drain wells. The tunneling pocket is formed by a self-aligned process by removing a dummy gate electrode from a gate spacer and by implanting the tunneling pocket into the semiconductive body or into an epitaxial film that is part of the semiconductive body.
摘要:
Embodiments of an apparatus and methods of providing a quantum well device for improved parallel conduction are generally described herein. Other embodiments may be described and claimed.
摘要:
A quantum well is formed for a deep well III-V semiconductor device using double pass patterning. In one example, the well is formed by forming a first photolithography pattern over terminals on a material stack, etching a well between the terminals using the first photolithography patterning, removing the first photolithography pattern, forming a second photolithography pattern over the terminals and at least a portion of the well, deepening the well between the terminals by etching using the second photolithography pattern, removing the second photolithography pattern, and finishing the terminals and the well to form a device on the material stack.
摘要:
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
摘要:
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
摘要:
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.