摘要:
Both high performance and low leakage current devices can be formed on a single wafer without significant additional processing steps by the formation of an ultra-thin gate dielectric and a high-permittivity gate dielectric, respectively, in regions wherein switching speed and low leakage current, respectively, are desired. Logic and embedded memory regions can be performance optimized on the same integrated circuit.
摘要:
A semiconductor-on-insulator device includes a silicon active layer with a crystal direction placed over an insulator layer. The insulator layer is placed onto a substrate with a crystal direction. Transistors oriented on a direction are formed on the silicon active layer.
摘要:
A method of forming a strained silicon layer on a relaxed, low defect density semiconductor alloy layer such as SiGe, has been developed. In a first embodiment of this invention the relaxed, low density SiGe layer is epitaxially grown on an silicon layer which in turn is located on an underlying SiGe layer. During the epitaxial growth of the overlying SiGe layer defects are formed in the underlying silicon layer resulting in the desired, relaxation, and decreased defect density for the SiGe layer. A second embodiment features an anneal procedure performed during growth of the relaxed SiGe layer, resulting in additional relaxation and decreased defect density, while a third embodiment features an anneal procedure performed to the underlying silicon layer prior to epitaxial growth of the relaxed SiGe layer, again allowing optimized relaxation and defect density to be realized for the SiGe layer. The ability to obtain a strained silicon layer on a relaxed, low defect density SiGe layer, allows devices with enhanced carrier mobility to be formed in the surface of the strained silicon layer, with decreased risk of leakage due the presence of the underlying, relaxed, low defect density SiGe layer.
摘要:
A static memory element includes a first inverter having an input coupled to a left bit node and an output coupled to a right bit node. A second inverter has an input coupled to the right bit node and an output coupled to the left right bit node. A first fully depleted semiconductor-on-insulator transistor has a drain coupled to the left bit node, and a second fully depleted semiconductor-on-insulator transistor has a drain coupled to the right bit node.
摘要:
A method of forming a tensile or compressive strained channel region for a semiconductor device, such as a MOSFET device, allowing improved carrier transport properties and increased device performance to be realized, has been developed. The method features the epitaxial growth of a semiconductor layer such as silicon, or silicon-germanium, with the incorporation of atoms such as carbon. The silicon-germanium-carbon channel layer, under biaxial tensile or compressive strain, is then overlaid with an optional silicon capping layer, used to accommodate the overlying, thermally grown silicon dioxide gate insulator layer, of the MOSFET device.
摘要:
In one aspect, the present invention teaches a multiple-gate transistor 130 that includes a semiconductor fin 134 formed in a portion of a bulk semiconductor substrate 132. A gate dielectric 144 overlies a portion of the semiconductor fin 134 and a gate electrode 146 overlies the gate dielectric 144. A source region 138 and a drain region 140 are formed in the semiconductor fin 134 oppositely adjacent the gate electrode 144. In the preferred embodiment, the bottom surface 150 of the gate electrode 146 is lower than either the source-substrate junction 154 or the drain-substrate junction 152.
摘要:
A static memory element includes a first inverter having an input coupled to a left bit node and an output coupled to a right bit node. A second inverter has an input coupled to the right bit node and an output coupled to the left right bit node. A first fully depleted semiconductor-on-insulator transistor has a drain coupled to the left bit node, and a second fully depleted semiconductor-on-insulator transistor has a drain coupled to the right bit node.
摘要:
A static memory element includes a first inverter having an input coupled to a left bit node and an output coupled to a right bit node. A second inverter has an input coupled to the right bit node and an output coupled to the left right bit node. A first fully depleted semiconductor-on-insulator transistor has a drain coupled to the left bit node, and a second fully depleted semiconductor-on-insulator transistor has a drain coupled to the right bit node.
摘要:
A semiconductor device includes an insulator layer, a semiconductor layer, a first transistor, and a second transistor. The semiconductor layer is overlying the insulator layer. A first portion of the semiconductor layer has a first thickness. A second portion of the semiconductor layer has a second thickness. The second thickness is larger than the first thickness. The first transistor has a first active region formed from the first portion of the semiconductor layer. The second transistor has a second active region formed from the second portion of the semiconductor layer. The first transistor may be a planar transistor and the second transistor may be a multiple-gate transistor, for example.
摘要:
A semiconductor device includes an insulator layer, a semiconductor layer, a first transistor, and a second transistor. The semiconductor layer is overlying the insulator layer. A first portion of the semiconductor layer has a first thickness. A second portion of the semiconductor layer has a second thickness. The second thickness is larger than the first thickness. The first transistor has a first active region formed from the first portion of the semiconductor layer. The second transistor has a second active region formed from the second portion of the semiconductor layer. The first transistor may be a planar transistor and the second transistor may be a multiple-gate transistor, for example.