Abstract:
An output driver circuit for an integrated circuit is disclosed, where the output driver drives an output terminal with a high logic level having a voltage limited from the power supply voltage of the integrated circuit. The limited voltage is provided by applying a limited output high voltage to an output buffer, such that the drive signal applied to the gate of the pull-up transistor in the output driver is limited by the limited output high voltage applied to the output buffer. A voltage reference and regulator circuit for generating the limited output high voltage, or for generating a reference voltage for application to a circuit other than an output buffer and that demands sink current, is also disclosed. The voltage reference and regulator is based on a current mirror, in which the sum of the current in the current mirror is controlled by a bias current source which may be dynamically controlled within the operating cycle or programmed by way of fuses. A sink current path circuit, according to various alternatives, is disclosed as providing an additional sink current path in the event that the limited output high voltage, or reference voltage, exceeds the desired level.
Abstract:
A memory device, which communicates with external address and data buses, includes a circuit for mapping a redundant memory column having a redundant memory cell to an address of a defective memory column. An enable line communicates with the redundant memory column and selectively carries active and inactive signal levels for respectively enabling and disabling communication between the data bus and the redundant memory cell. An address decoder receives an address signal on the address bus and generates the active level on the enable line when the value of the address signal equals the address of the defective memory cell. A driver precharges the enable line to the inactive level while the address signal is invalid.
Abstract:
A system for providing a CMOS NOR function that is distributed across a number of devices located on different chips. Specifically the present invention may be implemented in tag RAMs to provide expanded addressing. In other words, larger addresses may be processed using the present invention. This function is provided by using some transistors on each chip as part of the CMOS NOR gate. The tag RAM includes: a first input for receiving a first portion of an address, a second input for receiving a second portion of the address; a memory array connected to the first input; a comparator connected to the memory array and the second input, wherein the comparator has an output that produces an output signal in response to receiving a first signal from the second input and a second signal from the memory array; a first transistor having a gate connected to the output of the comparator, a first source/drain connected to a first pin, and a second source/drain connected to a second pin; and a second transistor having a gate connected to the output of the comparator, a first source/drain connected to the output pin, a second source/drain connected to a lower power supply voltage source.
Abstract:
A memory cell having a first device operable to selectively conduct and coupled between a first cell node and a low voltage reference node and a second device operable to selectively conduct and coupled between a second cell node and the low voltage reference node. The memory cell further includes a first and second data line and circuitry for receiving a system level voltage and for biasing the first and second data lines at a first and second data voltage, respectively. Still further, the memory cell includes circuitry for coupling the first and second data line to the first and second cell node, respectively, such that a logical high voltage is selectively written to one of the first and second cell nodes while a logical low is written to the other of the first and second cell nodes during a write operation. Still further, the memory cell includes a voltage source node for receiving a cell voltage and circuitry for coupling the voltage source node to the first and second cell nodes. Lastly, the memory cell includes cell voltage circuitry for generating the cell voltage, wherein the cell voltage circuitry is operable to output a cell voltage less than the system level voltage.
Abstract:
A cache tag memory device having a memory array comprising a first single-port memory array, a second single-port memory array, and a dual-port memory array. A first port, accessed by a local processor, may read from and write to its corresponding single-port memory array and the dual-port memory array. A second port, accessed through a global system bus, may also read from and write to its corresponding second single-port memory array and the dual-port memory array. Both ports operate asynchronously relative to each other. Status bits indicating the status of the entries in the first and second single-port memory arrays are stored in the dual-port memory array and may be altered by the global system while the local processor is performing its operations.
Abstract:
A method and circuit is provided for reading a memory array which utilizes multiple clocking signals during one read cycle to enable a dynamic sense amplifier to read data from the memory array. A dynamic sense amplifier is connected to an input line, a complementary input line, and a latch. A first equilibrating signal is input into the sense amplifier, followed thereafter by a first clocking signal. The first clocking signal enables the sense amplifier to read data on the input line and complementary input line. While the sense amplifier reads the data, the sense amplifier is isolated from the input and complementary input lines. Based upon the data read by the sense amplifier, an output state is provided for the latch. After reading the data, the sense amplifier is reconnected to the input and complementary input lines. A second clocking signal then enables the sense amplifier to read the data on the input and complementary input lines a second time, and the sense amplifier is isolated from the input and complementary input lines. The output state of the latch may or may not change based upon the data read by the sense amplifier the second time.
Abstract:
A memory system comprising a memory array having at least two pairs of data lines, first and second data lines corresponding to columns in the memory array. The memory array also includes two level shifter circuits, a first shifter circuit connected to the first lines and a second level shifter circuit connected to the second data lines, wherein the level shifter circuits produce output signals and may be enabled and disabled. A selection signal is used to selectively enable and disable the level shifter circuits, wherein one pair of data lines may be selected. An amplification circuit is connected to the level shifters for amplifying the output signals from the level shifter circuits, and a logic circuit is used to generate logic output signals in response to the amplified output signals from the amplification circuit.
Abstract:
A comparator system for a cache tag RAM memory that makes use of data bus lines already available on the cache tag RAM. The true data bus lines are connected together at a connection point and form a "wired" connection or configuration. A "wired" connection may be for example, a "wired OR" "wired NOR" "wired AND" or "wired NAND" according to the present invention. The complement data bus lines on the cache tag RAM are connected in a similar fashion. The comparator system is connected to the cache tag RAM data bus lines and generates a hit or miss signal based on the data on the cache tag RAM data bus lines and input data that controls transistors connected to the cache tag RAM data bus lines, resulting in a faster comparison function.
Abstract:
A method and circuit for reading a memory array by utilizing dual dynamic sense amplifiers. A first and a second dynamic sense amplifier are connected to an input line and complementary input line. A latch and a clocking circuit are also connected to the two dynamic sense amplifiers. Initially, an equilibrating signal is input into both sense amplifiers. A first clocking signal and a first isolating signal are then input into the first dynamic sense amplifier. The first clocking signal enables the first sense amplifier to read the data on the input and complementary input lines, while the first isolating signal isolates the first sense amplifier from the input and complementary input lines. An output is then provided to the latch based upon the data read by the first sense amplifier. A second clocking signal and a second isolating signal are then input into the second sense amplifier to enable the second sense amplifier to read the data on the input and complementary input lines. The state of the latch may or may not change based upon the data read by the second sense amplifier.
Abstract:
An integrated circuit memory is disclosed which has its primary memory array arranged into blocks and which has redundant columns, each of which can replace a column in any one of the blocks. The redundant columns are selected by way of a redundant column decoder associated with each column, each of which includes a set of address fuses into which an address is programmed, responsive to which its associated redundant column is to be selected. A plurality of redundant sense amplifiers are each associated with selected redundant columns, and are each controlled to begin the sense operation prior to propagation of the address signal through the redundant column decoders and summing circuitry. In the event that the received memory address does not match any of the programmed values in the redundant column decoders associated with a redundant sense amplifier, the sense operation is terminated. In this way, the sense operation is not delayed by the additional delay required for redundant decoding and propagation of the redundant address signals, and thus the access time penalty for accessing a redundant memory cell is much reduced or eliminated. The coupling of each redundant sense amplifier is controlled by a redundant multiplexer associated with each of the input/output terminals. Each redundant multiplexer receives the redundant column select signals from each associated redundant column decoder, and includes fuses which indicate if its input/output terminal is to be placed in communication with its associated sense amplifier upon selection of a redundant column.