Abstract:
A method for adapting communications system topology includes receiving, by an adaptation device, first signal plus interference to noise ratio (SINR) values from user equipments in a communications system, the first SINR values associated with a transmission configuration as configured by the communications system, and adapting, by the adaptation device, a topology of the communications system in accordance with the first SINR values received from the user equipments already attached to the communications system.
Abstract:
A device, network, and method for providing a variable-duration reference signal. In an embodiment, a method for wireless communications includes determining, by a first device, a starting timing and an ending timing of one or more symbols of a first carrier in accordance with a reference timing for transmission and reception, wherein each of the one or more symbols has a fixed duration; determining, by the first device, a signal of variable duration on the first carrier, wherein the starting timing of the signal of variable duration is offset from the starting timing of any of the one or more symbols of the first carrier in accordance with the reference timing; and transmitting, by the first device on the first carrier, the signal of variable duration, at the starting timing of the signal of variable duration.
Abstract:
A next-generation base station can update an uplink-downlink (UL/DL) configuration of a cell more frequently than legacy user equipments (UEs) are configured to recognize UL/DL updates while preventing non-compliant uplink transmissions in downlink subframes. For instance, a next-generation base station can restrict updates to the uplink-downlink configuration such that uplink timeslots previously allocated for random access channel (RACH) transmission opportunities by legacy UEs remain configured for uplink transmission. Alternatively, the next-generation base station can restrict the allocation of RACH transmission opportunities of legacy UEs to timeslots that are statically configured for uplink transmission. Notably, such a restriction may be selectively applied to legacy UEs, so as to not limit the performance of next-generation UEs.
Abstract:
An embodiment of the present invention is disclosed including a method for adaptive reception, the method. The method includes receiving, by a user equipment (UE), an indicator from a first component carrier, the indicator indicating whether a second component carrier is in the On state. Receiving, by the UE, from the second component carrier a subframe wherein a reference signal is provided at a first symbol position of the subframe in a majority of subcarriers of the subframe. The second component carrier and the UE are then synchronized based on the reference signals. The UE then initiates a data link with the second component carrier.
Abstract:
System and method embodiments are provided for network cell discovery. In an embodiment, a method in a mobile device includes receiving, at the mobile device, at least one parameter from a first network component, wherein the at least one parameter is associated with a discovery signal (DS) generated by and transmitted from a second network component, wherein the parameter specifies a time period between successive transmissions of the DS, an offset within the time period, and a duration of each transmission of the DS; receiving, at the mobile device, according to the time period and the offset, the DS from the second network component; and suspending reception on a first carrier radio resource during a gap in successive transmissions on the first carrier radio resource and receiving a signal on a second carrier radio resource during the gap, wherein the gap is determined according to the parameter.
Abstract:
Measurements and Channel State Information (CSI) feedback are configured using communications between a network and user equipment (UE). The communications includes a first signaling from a network component to the UE indicating one or more reference signal (RS) resource configurations, a second signaling indicating one or more interference measurement (IM) resource configurations, and a third signaling indicating a CSI report configuration, wherein the CSI report configuration indicates a subset of the one or more RS resource configurations and a subset of the one or more IM resource configurations. The UE establishes a RS based measurement according to the subset of the one or more RS resource configurations and an IM according to the subset of the one or more IM resource configurations. The UE then generates and sends to the network a CSI report in accordance with the CSI report configuration and using the RS based measurement and the IM.
Abstract:
User Equipments (UEs) may be assigned a set of aggregated component carriers for downlink carrier aggregation and/or carrier selection. Some UEs may be incapable of transmitting uplink signals over all component carriers in their assigned set of aggregated component carriers. In such scenarios, a UE may need to perform SRS switching in order to transmit SRS symbols over all of the component carriers. Embodiments of this disclosure provide various techniques for facilitating SRS switching. For example, a radio resource control (RRC) message may be used to signal a periodic SRS configuration parameter. As another example, a downlink control indication (DCI) message may be used to signal an aperiodic SRS configuration parameter. Many other examples are also provided.
Abstract:
Measurements and Channel State Information (CSI) feedback are configured using communications between a network and user equipment (UE). The communications includes a first signaling from a network component to the UE indicating one or more reference signal (RS) resource configurations, a second signaling indicating one or more interference measurement (IM) resource configurations, and a third signaling indicating a CSI report configuration, wherein the CSI report configuration indicates a subset of the one or more RS resource configurations and a subset of the one or more IM resource configurations. The UE establishes a RS based measurement according to the subset of the one or more RS resource configurations and an IM according to the subset of the one or more IM resource configurations. The UE then generates and sends to the network a CSI report in accordance with the CSI report configuration and using the RS based measurement and the IM.
Abstract:
A network controller may configure one or more channel state information-reference signal (CSI-RS) configurations for transmitting RSs to user equipments (UEs) for tracking. A CSI-RS configuration may specify a set of CSI-RS resources for transmitting RSs in two consecutive slots. The set of CSI-RS resources may include a plurality of one-port CSI-RS resources configured according to the CSI-RS configuration. The CSI-RS configuration may specify a quasi co-location (QCL) configuration including a set of QCL parameters, where a demodulation reference signal (DMRS) has a QCL relationship with the RS with respect to the set of QCL parameters. The network controller may signal the one or more CSI-RS configurations to UEs.
Abstract:
A method for operating a user equipment (UE) includes receiving at least one of a configuration of a first group of one or more downlink (DL) signals, a configuration of a second group of one or more open-loop power control (PC) parameters, a configuration of a third group of one or more closed-loop PC parameters, or a configuration of a fourth group of one or more loop states, receiving a configuration of a PC setting, wherein the PC setting is associated with at least one of a subset of the first group, a subset of the second group, a subset of the third group, or a subset of the fourth group, selecting a transmit power level in accordance with the PC setting and a pathloss, wherein the pathloss is determined in accordance with a DL reference signal (SS) and a synchronization signal (SS).