摘要:
A method and system for aorta segmentation in a 3D volume, such as a C-arm CT volume is disclosed. The aortic root is detected in the 3D volume using marginal space learning (MSL) based segmentation. The aortic arch is detected in the 3D volume using MSL based segmentation. The ascending aorta is tracked from the aortic root to the aortic arch in the 3D volume, and the descending aorta is tracked from the aortic arch in the 3D volume.
摘要:
A method and system for physiological image registration and fusion is disclosed. A physiological model of a target anatomical structure in estimated each of a first image and a second image. The physiological model is estimated using database-guided discriminative machine learning-based estimation. A fused image is then generated by registering the first and second images based on correspondences between the physiological model estimated in each of the first and second images.
摘要:
A method and system for patient-specific planning and guidance of electrophysiological interventions is disclosed. A patient-specific anatomical heart model is generated from cardiac image data of a patient. A patient-specific cardiac electrophysiology model is generated based on the patient-specific anatomical heart model and patient-specific electrophysiology measurements. Virtual electrophysiological interventions are performed using the patient-specific cardiac electrophysiology model. A simulated electrocardiogram (ECG) signal is calculated in response to each virtual electrophysiological intervention.
摘要:
A method and system for estimating arterial compliance and resistance based on medical image data and pressure measurements is disclosed. An arterial inflow estimate over a plurality of time points is determined based on medical image data of a patient. An arterial pressure measurement of the patient is received. At least one cardiac cycle of the arterial pressure measurement is synchronized with at least one cardiac cycle of the arterial inflow measurement. Arterial compliance and resistance of the patient is estimated based on the arterial inflow estimate and the synchronized arterial pressure measurement.
摘要:
A method and system for building a statistical four-chamber heart model from 3D volumes is disclosed. In order to generate the four-chamber heart model, each chamber is modeled using an open mesh, with holes at the valves. Based on the image data in one or more 3D volumes, meshes are generated and edited for the left ventricle (LV), left atrium (LA), right ventricle (RV), and right atrium (RA). Resampling to enforce point correspondence is performed during mesh editing. Important anatomic landmarks in the heart are explicitly represented in the four-chamber heart model of the present invention.
摘要:
Physically-constrained modeling of a heart is provided. Patient-specific data may be used to estimate heart anatomy locations. A model is applied to the data for estimation. For increased accuracy of estimation, the biomechanics of the heart, such as the valve, may be used to constrain the estimation. By applying a dynamic system between estimated anatomy locations of different times, the locations may be deformed or refined. The modeled heart and/or valve may be used to estimate hemodynamics. The resulting velocities or other motion information may be used to emulate ultrasound Doppler imaging for comparing with acquired ultrasound Doppler data. The comparison may validate the modeling.
摘要:
A method and system for estimating arterial compliance and resistance based on medical image data and pressure measurements is disclosed. An arterial inflow estimate over a plurality of time points is determined based on medical image data of a patient. An arterial pressure measurement of the patient is received. At least one cardiac cycle of the arterial pressure measurement is synchronized with at least one cardiac cycle of the arterial inflow measurement. Arterial compliance and resistance of the patient is estimated based on the arterial inflow estimate and the synchronized arterial pressure measurement.
摘要:
A method and system for patient-specific planning and guidance of electrophysiological interventions is disclosed. A patient-specific anatomical heart model is generated from cardiac image data of a patient. A patient-specific cardiac electrophysiology model is generated based on the patient-specific anatomical heart model and patient-specific electrophysiology measurements. Virtual electrophysiological interventions are performed using the patient-specific cardiac electrophysiology model. A simulated electrocardiogram (ECG) signal is calculated in response to each virtual electrophysiological intervention.
摘要:
A mitral valve is detected in transthoracic echocardiography. The ultrasound transducer is positioned against the chest of the patient rather than being inserted within the patient. While data acquired from such scanning may be noisier or have less resolution, the mitral valve may still be automatically detected. Using both B-mode data representing tissue as well as flow data representing the regurgitant jet, the mitral valve may be detected automatically with a machine-learnt classifier. A series of classifiers may be used, such as determining a position and orientation of a valve region with one classifier, determining a regurgitant orifice with another classifier, and locating mitral valve anatomy with a third classifier. One or more features for some of the classifiers may be calculated based on the orientation of the valve region.
摘要:
A system operating in a plurality of modes to provide an integrated analysis of molecular data, imaging data, and clinical data associated with a patient includes a multi-scale model, a molecular model, and a linking component. The multi-scale model is configured to generate one or more estimated multi-scale parameters based on the clinical data and the imaging data when the system operates in a first mode, and generate a model of organ functionality based on one or more inferred multi-scale parameters when the system operates in a second mode. The molecular model is configured to generate one or more first molecular findings based on a molecular network analysis of the molecular data, wherein the molecular model is constrained by the estimated parameters when the system operates in the first mode. The linking component, which is operably coupled to the multi-scale model and the molecular model, is configured to transfer the estimated multi-scale parameters from the multi-scale model to the molecular model when the system operates in the first mode, and generate, using a machine learning process, the inferred multi-scale parameters based on the molecular findings when the system operates in the second mode.