Abstract:
A weld training system is provided. The weld training system includes a welding torch configured to perform a welding procedure and a mobile device coupled to the welding torch. The mobile device is configured to detect, via one or more sensors, dynamic position or orientation information of the welding torch during the welding procedure to determine one or more operating parameters of the welding procedure. The mobile device is also configured to display a welding environment based at least in part on the one or more operating parameters.
Abstract:
The present invention is directed to a welding-type power source that includes a power source housing and an engine arranged in the power source housing to supply electrical power. An energy storage device is included that is in rechargeable association with the internal combustion engine and arranged to provide welding-type power for at least a given period.
Abstract:
Laser hybrid welding systems adapted to identify and/or fix a weld defect occurring during a laser hybrid welding process are provided. Embodiments of the laser hybrid welding system may include one or more devices that provide feedback to a controller regarding one or more weld parameters. One embodiment of the laser hybrid welding system includes sensors that are adapted to measure the weld voltage and/or amperage during the welding process and transmit the acquired data to the controller for processing. Another embodiment of the laser hybrid welding system includes a lead camera and a lag camera that film an area directly in front of the weld location and directly behind the weld location.
Abstract:
The present invention is directed to a welding-type power source that includes a power source housing and an engine arranged in the power source housing to supply electrical power. An energy storage device is included that is in rechargeable association with the internal combustion engine and arranged to provide welding-type power for at least a given period.
Abstract:
A welding system includes an orientation sensing system associated with a welding torch and is configured to sense a welding torch orientation relative to a direction of gravity. The welding system also includes a processing system communicatively couple to the orientation sensing system and configured to determine an angular position of the welding torch relative to a pipe based at least in part on the sense welding torch orientation.
Abstract:
An additive manufacturing system includes an additive manufacturing tool configured to supply a plurality of droplets to a part, a temperature control device configured to control a temperature of the part, and a controller configured to control the composition, formation, and application of each droplet to the plurality of droplets to the part independent from control of the temperature of the part via the temperature control device. The plurality of droplets is configured to build up the part. Each droplet of the plurality of droplets includes at least one metallic anchoring material.
Abstract:
The present invention is directed to a remotely controlled welding machine. A remote control uses the welding circuit to transfer information to a welding power source. The information to be communicated to the power source includes welding power source output command information (amperage/voltage control), welding circuit on/off information (power source output contactor control), and power source mode control (constant voltage/constant current). A transmitter transmits the desired welding operational parameters to a receiver disposed in the power source. The transmitter is constructed to use only a small amount of power which, preferably, is supplied by one or two low voltage replaceable and/or rechargeable batteries. Additionally, an open circuit voltage is not created between the power source and an electrode holder when an arc is not present.
Abstract:
A hybrid welding device including a fuel cell and an energy storage device that cooperate to power a welding operation and/or an auxiliary operation are provided. In some embodiments, the hybrid welding device may also include an engine coupled to a generator that is configured to supplement the power provided by the fuel cell and/or the energy storage device. The hybrid welding device may be adapted to provide power for a welding operation and/or an auxiliary operation when operated as a standalone unit and/or when connected to a primary source of utility power.