Abstract:
A method of fabricating an electronic device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. At least one first/second set of nanowires and pads are patterned in the SOI layer. A conformal gate dielectric layer is selectively formed surrounding a portion of each of the first set of nanowires that serves as a channel region of a transistor device. A first metal gate stack is formed on the conformal gate dielectric layer surrounding the portion of each of the first set of nanowires that serves as the channel region of the transistor device in a gate all around configuration. A second metal gate stack is formed surrounding a portion of each of the second set of nanowires that serves as a channel region of a diode device in a gate all around configuration.
Abstract:
A plurality of semiconductor fins are formed which extend from a semiconductor material portion that is present atop an insulator layer of a semiconductor-on-insulator substrate. A gate structure and adjacent gate spacers are formed that straddle each semiconductor fin. Portions of each semiconductor fin are left exposed. The exposed portions of the semiconductor fins are then merged by forming an epitaxial semiconductor material from an exposed semiconductor material portion that is not covered by the gate structure and gate spacers.
Abstract:
At least one semiconductor fin is formed over an insulator layer. Portions of the insulator layer are etched from underneath the at least one semiconductor fin. The amount of the etched portions of the insulator is selected such that a metallic gate electrode layer fills the entire gap between the recessed surfaces of the insulator layer and the bottom surface(s) of the at least one semiconductor fin. An interface between the metallic gate electrode layer and a semiconductor gate electrode layer contiguously extends over the at least one semiconductor fin and does not underlie any of the at least one semiconductor fin. During patterning of a gate electrode, removal of the semiconductor material in the semiconductor gate electrode layer can be facilitated because the semiconductor gate electrode layer is not present under the at least one semiconductor fin.
Abstract:
A plurality of semiconductor fins are formed which extend from a semiconductor material portion that is present atop an insulator layer of a semiconductor-on-insulator substrate. A gate structure and adjacent gate spacers are formed that straddle each semiconductor fin. Portions of each semiconductor fin are left exposed. The exposed portions of the semiconductor fins are then merged by forming an epitaxial semiconductor material from an exposed semiconductor material portion that is not covered by the gate structure and gate spacers.
Abstract:
A tapered fin field effect transistor can be employed to provide enhanced electrostatic control of the channel. A stack of a semiconductor fin and a dielectric fin cap having substantially vertical sidewall surfaces is formed on an insulator layer. The sidewall surfaces of the semiconductor fin are passivated by an etch residue material from the dielectric fin cap with a tapered thickness profile such that the thickness of the etch residue material decreased with distance from the dielectric fin cap. An etch including an isotropic etch component is employed to remove the etch residue material and to physically expose lower portions of sidewalls of the semiconductor fin. The etch laterally etches the semiconductor fin and forms a tapered region at a bottom portion. The reduced lateral width of the bottom portion of the semiconductor fin allows greater control of the channel for a fin field effect transistor.
Abstract:
A tapered fin field effect transistor can be employed to provide enhanced electrostatic control of the channel. A stack of a semiconductor fin and a dielectric fin cap having substantially vertical sidewall surfaces is formed on an insulator layer. The sidewall surfaces of the semiconductor fin are passivated by an etch residue material from the dielectric fin cap with a tapered thickness profile such that the thickness of the etch residue material decreased with distance from the dielectric fin cap. An etch including an isotropic etch component is employed to remove the etch residue material and to physically expose lower portions of sidewalls of the semiconductor fin. The etch laterally etches the semiconductor fin and forms a tapered region at a bottom portion. The reduced lateral width of the bottom portion of the semiconductor fin allows greater control of the channel for a fin field effect transistor.
Abstract:
Techniques for quantifying ΔDfin in FINFET technology are provided. In one aspect, a method for quantifying ΔDfin between a pair of long channel FINFET devices includes the steps of: (a) obtaining Vth values for each of the long channel FINFET devices in the pair; (b) determining a ΔVth for the pair of long channel FINFET devices; and (c) using the ΔVth to determine the ΔDfin between the pair of long channel FINFET devices, wherein the ΔVth is a function of a difference in a Qbody and a gate capacitance between the pair of long channel FINFET devices, and wherein the Qbody is a function of Dfin and Nch for each of the long channel FINFET devices in the pair, and as such the ΔVth is proportional to the ΔDfin between the pair of long channel FINFET devices.
Abstract:
A method of fabricating an electronic device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. An oxide layer is formed over the SOI layer. At least one first set and at least one second set of fins are patterned in the SOI layer and the oxide layer. A conformal gate dielectric layer is selectively formed on a portion of each of the first set of fins that serves as a channel region of a transistor device. A first metal gate stack is formed on the conformal gate dielectric layer over the portion of each of the first set of fins that serves as the channel region of the transistor device. A second metal gate stack is formed on a portion of each of the second set of fins that serves as a channel region of a diode device.
Abstract:
In one aspect, a method of fabricating an electronic device includes the following steps. An alternating series of device and sacrificial layers are formed in a stack on an SOI wafer. Nanowire bars are etched into the device/sacrificial layers such that each of the device layers in a first portion of the stack and each of the device layers in a second portion of the stack has a source region, a drain region and a plurality of nanowire channels connecting the source region and the drain region. The sacrificial layers are removed from between the nanowire bars. A conformal gate dielectric layer is selectively formed surrounding the nanowire channels in the first portion of the stack which serve as a channel region of a nanomesh FET transistor. Gates are formed surrounding the nanowire channels in the first and second portions of the stack.
Abstract:
A method for modeling FinFET width quantization is described. The method includes fitting a FinFET model of a FinFET device to single fin current/voltage characteristics. The FinFET device comprises a plurality of fins. The method includes obtaining statistical data of at least one sample FinFET device. The statistical data includes DIBL data and SS data. The method also includes fitting the FinFET model to a variation in a current to turn off the finFETs device (IOFF) in the statistical data using the DIBL data and the SS data and determining a model for a voltage to turn off the finFETs device (VOFF). The method also includes fitting the FinFET model to the VOFF.