Abstract:
The present invention discloses a cluster head assisted method for converting a user terminal from device-to-device (D2D) communication to cellular communication. When quality of a D2D link between a user terminal and a cluster head is lower than a predetermined threshold, if the user terminal has to leave the cluster but still expects to continue an original the service, the user terminal performs cell search and random access, and establishes a radio resource control (RRC) connection with a target base station of a cellular network. Switching from D2D communication to cellular communication is implemented with the assistance of the cluster head, and a communication manner after the switching is provided. The present invention implements mobile switching from D2D communication in distributed cluster communication to cellular communication, which can reduce route search delay and save wireless resources.
Abstract:
A technique includes: comparing (a) measurements made at the first access node of transmissions made by a plurality of other access nodes against (b) measurements made at the communication device of transmissions made by said plurality of other access nodes; and deciding whether or not to select said first access node as a handover candidate for said communication device based at least partly on the result of said comparison.
Abstract:
The disclosure relates to generation of mobility information. A mobile device can determine, based on measurements, at least one parameter relating to its movement relative to a cell. A weighting of a counter output for use in estimation of a mobility state of the mobile device is determined. The determining includes comparison of the at least one parameter to at least one threshold. Information about the weighting can be provided by a network element. When the network element obtains the weighted estimation it can take it into account in mobility control of the mobile device.
Abstract:
A preparation method for molecular recognition sensor by electrodeposition is provided. The preparation method is as following: forming molecularly imprinted polymeric micelles by self-assembly of ionic type photosensitive copolymers; forming a film on the surface of an electrode by electrodepositing the molecularly imprinted polymeric micelles at a constant potential; crosslinking the electrodeposited micellar film via ultraviolet light irradiation; extracting the template molecules from the crosslinked film to obtain electrode modified by the molecularly imprinted polymeric micellar film; and connecting the modified electrode with a sensor device and a computer to construct a molecular recognition sensing system capable of specifically detecting the template molecules.
Abstract:
Pharmaceutical, chemical and biological agents containing a reversible disulfide linker are described. These agents can also be covalently bound or contained in delivery vehicles for delivering the agents to desired targets or areas. Also described are delivery vehicles which contain an agent having a reversible disulfide linker and to vehicles that are covalently linked to the agent containing a reversible disulfide linker. The modifications described herein can modify properties of the agents and vehicles, thereby providing desired solubility, stability, hydrophobicity and targeting while the reversibility of the linker can leave the agent to which it is attached free from residual chemical groups after being reduced.
Abstract:
Various example embodiments are disclosed herein. In an example embodiment, a method of transmitting data via a wireless transmission path that may include a user equipment as a first end point, a base station as second end point, and at least one relay station as an intermediate point(s). The method may include receiving a data transmission from a prior point in the transmission path. Substantially simultaneously: forwarding the received data to the next point in the transmission path, and determining if the received data is corrupt. Transmitting a transmission message to the next point in the transmission path indicating whether or not the received data was corrupt. And, if the data is not corrupt, transmitting a receipt message to the prior point indicating that the data was uncorrupt when received.
Abstract:
Disclosed are a system and a method for controlling multicast data. The system may comprise: a plurality of transceivers, each of which comprises a laser configured to generate an optical carrier, the generated optical carrier being modulated by electrical downstream p-t-p data so as to generate optical downstream p-t-p IRZ signal; a PM configured to modulate the generated optical downstream p-t-p IRZ signal by electrical multicast data so as to generate orthogonally modulated signal; and a DI configured to demodulate the orthogonally modulated data and has a frequency response peak or dip in response to the demodulating, wherein an offset of a laser center wavelength of the laser from the frequency response peak or dip is adjustable so as to selectively enable or disable the multicast data.
Abstract:
A recombinant fusion protein comprising a human erythropoietin peptide portion linked to an immunoglobulin peptide portion is described. The fusion protein has a prolonged half-life in vivo in comparison to naturally occurring or recombinant native human erythropoietin. In one embodiment of the invention, the protein has a half-life in vivo at least three fold higher than native human erythropoietin. The fusion protein also exhibits enhanced erythropoietic bioactivity in comparison to native human erythropoietin. In one embodiment, the fusion protein comprises the complete peptide sequence of a human erythropoietin (EPO) molecule and the peptide sequence of an Fc fragment of human immunoglobulin IgG1. The Fc fragment in the fusion protein includes the hinge region, CH2 and CH3 domains of human immunoglobulin IgG1. The EPO molecule may be linked directly to the Fc fragment to avoid extraneous peptide linkers and lessen the risk of an immunogenic response when administered in vivo. In one embodiment the hinge region is a human Fc fragment variant having a non-cysteine residue at amino acid 6. The invention also relates to nucleic acid and amino acid sequences encoding the fusion protein and transfected cell lines and methods for producing the fusion protein. The invention further includes pharmaceutical compositions comprising the fusion protein and methods of using the fusion protein and/or the pharmaceutical compositions, for example to stimulate erythropoiesis in subjects in need of therapy.