Abstract:
According to one embodiment, a method for transmitting, by a user equipment (UE), information in a wireless communication system includes: determining a first information sequence based on a first cyclically shifted base sequence and a first orthogonal sequence by using a first physical uplink control channel (PUCCH) resource for a first antenna, wherein the first PUCCH resource is obtained based on a channel control element (CCE) index related to a physical downlink control channel (PDCCH) and a parameter configured by a higher layer; determining a second information sequence based on a second cyclically shifted base sequence and a second orthogonal sequence by using a second PUCCH resource for a second antenna, wherein the second PUCCH resource is obtained by adding an offset to the first PUCCH resource; transmitting the first information sequence via the first antenna; and transmitting the second information sequence via the second antenna.
Abstract:
A base station does not transmit any reference signal (RS) for channel measurement in a subframe in which transmission of an RS collides with transmission of a synchronization signal or a broadcast signal or in a resource block including the synchronization signal or the broadcast signal in the subframe. A user equipment assumes that any RS for channel measurement is not transmitted in a subframe or in a resource block when transmission of an RS collides with transmission of a synchronization signal or a broadcast signal in the subframe or in the resource block.
Abstract:
A method for a base station to transmit a channel-state-information reference signal for up to 8 antenna ports includes mapping, in accordance with a predetermined pattern, the channel-state-information reference signal for up to 8 antenna ports onto a data region of a downlink subframe having an extended cyclic prefix (CP) structure, and transmitting the downlink subframe onto which the channel-state-information reference signal for up to 8 antenna ports has been mapped; and, in the predetermined pattern, the channel-state-information reference signal for up to 8 antenna ports in mapped onto 2 OFDM symbols on the data region of the downlink subframe, with a definition for mapping onto at least one of 4 subcarrier wave positions in each of the 2 OFDM symbols, and the 4 subcarrier wave positions defined in the predetermined pattern can be disposed at 3 subcarrier wave intervals.
Abstract:
A method is described for transmitting, by a user equipment (UE), a demodulation reference signal (DMRS) for a physical uplink shared channel (PUSCH) in a wireless communication system. A cyclic shift field is received through a physical downlink control channel (PDCCH) from a base station. The cyclic shift field indicates first, second, third and fourth cyclic shifts, first orthogonal cover code (OCC) and a second OCC. A first DMRS sequences is generated by using the first cyclic shift and the first OCC. A second DMRS sequence is generated by using the second cyclic shift and the first OCC. A third DMRS sequence is generated by using the third cyclic shift and the second OCC. A fourth DMRS sequence is generated by using the fourth cyclic shift and the second OCC. The first, second, third and fourth DMRS sequences are transmitted to the base station.
Abstract:
Embodiments of the present invention relate to a method and an apparatus for enabling a terminal to transmit a signal in a wireless communication system. According to one embodiment, a signal transmission method includes: receiving configuration information for multi-antenna transmission from a base station; configuring a multi-antenna transmission mode in accordance with the received configuration information; and transmitting an uplink channel having a plurality of symbols to the base station through multiple antennas.
Abstract:
The present invention provides a data transmission device and method in a wireless communication system. The device comprises a processor which is connected with the M antennas and which is formed so as to generate data to be transmitted through the M antennas, on the basis of a precoding matrix; the precoding matrix is generated based on a plurality of matrices; and a first matrix, which is one matrix among the plurality of matrices, is selected from within a codebook for N antennas (where N
Abstract:
A method for encoding control information by a user equipment (UE) in a wireless communication system, includes obtaining a plurality of Channel Quality Information (CQIs) for a plurality of downlink carriers, at least one RI (Rank Indicator) and at least one ACK/NACK (Acknowledgement/Negative-ACK); concatenating the plurality of CQIs; encoding the concatenated plurality of CQIs, the at least one RI and the at least one ACK/NACK, separately; and transmitting the encoded plurality of CQIs, the encoded at least one RI and the encoded at least one ACK/NACK on only one uplink carrier.
Abstract:
Disclosed is a method for transmitting control information on uplink multi-antenna transmission from a base station and the method includes: transmitting DCI that schedules uplink transmission of a first data block and a second data block through a PDCCH; receiving the first and second data blocks scheduled by the DCI; transmitting information indicating ACK or NACK for the received first and second data blocks, respectively, by using a first PHICH for the first data block and a second PHICH resource for the second data block; receiving a retransmission for a negative-acknowledged data block; and transmitting information indicating ACK or NACK of the retransmission of the negative-acknowledged data block by using the first PHICH resource when the number of negative-acknowledged data blocks is not identical to the number of data blocks that the PDCCH indicates.
Abstract:
An apparatus for transmitting and receiving data in a wireless communication system method thereof are disclosed. In a terminal of a wireless communication system, the present invention includes receiving a physical downlink control channel (hereinafter abbreviated PDCCH), receiving a physical downlink shared channel (hereinafter abbreviated PDSCH), and demodulating the PDSCH by interpreting the PDCCH according to a type of a subframe including the PDCCH and the PDSCH.
Abstract:
A method and an apparatus of receiving data, the method carried in a user equipment (UE) configured to communicate with a first cell and a second cell, are provided. The method includes: receiving a first downlink data through a first downlink channel from the first cell, receiving a second downlink data through a second downlink channel from the second cell, and transmitting a data on a third channel, wherein the data transmitted on the third channel is related to a HARQ operation, and wherein the third channel is used to transmit the data related to the HARQ operation with respect to both the first data and the second data which have been received from the first and second cells, respectively.