摘要:
A new method for planarizing silicon dioxide surfaces in semiconductor structures. Starting with a structure of an underlying layer (for instance a layer of metal lines) a layer of oxide is deposited and profiled by positive tone imaging. A layer of PPMS is deposited. Using the mask of the starting structure, the PPMS layer is exposed changing the PPMS to PPMSO in the exposed regions. The unexposed PPMS is removed, the PPMSO (unexposed regions of the PPMS) are planarized, this planarization can proceed to the point where no more PPMSO is present (the PPMSO “columns” are removed together with the intra-layer of patterned oxide). The surface thus created shows excellent planarity, this surface can be further planarized down to the top level of the underlying pattern, if it is desirable to do so.
摘要:
An encapsulated copper plug on a doped silicon semiconductor substrate has a substrate surface, covered with insulation, with a plug hole with a diffusion barrier formed on the walls and the bottom of the hole to the top of the hole. The plug hole is partially filled with an electrolessly deposited copper metal plug. An encapsulating metal deposit caps the plug without any intervening oxidation and degradation. In a transition from copper to a codeposit of copper, an encapsulating Pt, Pd, and/or Ag metal deposits in the electroless bath without oxidation and degradation followed by a pure deposit of the encapsulating metal layer to cap the plug. The surface of the encapsulating metal deposit is formed by overgrowth above the plug hole followed by polishing the surface of the insulator layer removing the overgrowth of the metal layer polished by a CMP process to planarize the surface of the insulator layer which is the top surface of device to achieve coplanarity of metal layer with the topography of the insulator layer.
摘要:
A new method of forming MOS transistors has been achieved. A pad oxide layer is grown. A silicon nitride layer is deposited. Trenches are etched for planned STI. A trench liner is grown inside of the trenches. A trench oxide layer is deposited filling the trenches. The trench oxide layer is polished down to complete the STI. The same silicon nitride layer is patterned to form dummy gates. A gate liner layer is deposited. Ions are implanted to form lightly doped drain junctions. Sidewall spacers are formed adjacent to the dummy gate electrodes and the shallow trench isolations. Ions are implanted to form the drain and source junctions. An epitaxial silicon layer is grown overlying the source and drain junctions. A metal layer is deposited. The epitaxial silicon layer is converted into sulicide to form silicided source and drain contacts. An interlevel dielectric layer is deposited and polished down to the dummy gates. The dummy gates are etched away to form openings for the planned transistor gates. A gate oxide layer is deposited lining the transistor gate openings. A gate electrode layer is deposited to fill the transistor gate openings. The gate electrode layer is patterned to complete the transistor gates.
摘要:
A method of forming shallow trench isolations is achieved. STI structures so formed do not exhibit isolation oxide thinning due to dishing and erosion problems during the oxide CMP process. A silicon substrate is provided. A first dielectric layer is formed overlying the silicon substrate. A silicon nitride layer is deposited. The silicon nitride layer, the first dielectric layer, and the silicon substrate are etched to form trenches for planned shallow trench isolations. A second dielectric layer is deposited overlying the silicon nitride layer and the trenches. The second dielectric layer is etched to form sidewall spacers inside the trenches. A silicon layer is selectively grown overlying the silicon substrate only where the silicon substrate is exposed in the trenches, and wherein the step of growing is stopped before the silicon layer exceeds the top surface of the silicon nitride layer. A third dielectric layer is deposited overlying the silicon nitride layer, the sidewall spacers, and the silicon layer. The third dielectric layer is polished down to the top surface of the silicon nitride layer to complete the shallow trench isolations where the silicon nitride layer acts as a polishing stop, and the integrated circuit device is completed.
摘要:
A method for planarizing metal plugs for device interconnections. The process begins by providing a semiconductor structure with at least one device thereon. A dielectric layer is formed over the device and the semiconductor structure. A first barrier metal layer is formed on the dielectric layer, and a sacrificial oxide layer is formed on the first barrier metal layer. The sacrificial oxide layer, the first barrier metal layer, and the dielectric layer are patterned to form contact openings. A second barrier metal layer is formed over the semiconductor structure, and a metal contact layer is formed on the second barrier metal layer. The metal contact layer and the second barrier metal layer are planarized using a first chemical mechanical polishing process and the sacrificial oxide layer is removed. The metal contact layer and the first barrier metal layer are planarized using a second chemical mechanical polishing process.
摘要:
A method for making copper interconnections in an integrated circuit is described. The structure is a damascene copper connector whose upper surface is coplanar with the upper surface of the insulating layer in which it is embedded. Out-diffusion of copper from the connector is prevented by two barrier layers. One is located at the interface between the connector and the insulating layer while the second barrier is an insulating layer which covers the upper surface of the connector. The damascene process involves filling a trench in the surface of the insulator with copper and then removing the excess by chem.-mech. polishing. Since photoresist is never in direct contact with the copper the problem of copper oxidation during resist ashing has been effectively eliminated.
摘要:
A new method of forming improved buried contact junctions is described. A layer of polysilicon overlying gate silicon oxide is provided over the surface of a semiconductor substrate and etched away to provide an opening to the substrate where a planned buried contact junction will be formed. A second doped polysilicon layer and a tungsten silicide layer are deposited and patterned to provide gate electrodes and a contact overlying the planned buried contact junction and providing an opening to the substrate where a planned source/drain region will be formed adjoining the planned buried contact junction and wherein a portion of the polysilicon layer not at the polysilicon contact remains as residue. The residue is etched away whereby a trench is etched into the substrate at the junction of the planned source/drain region and the planned buried contact junction. A doped glasseous layer is deposited overlying the patterned tungsten silicide/polysilicon layer and within the trench, then isotropically etched away until it remains only partially filling the trench. The substrate is oxidized to drive-in dopant from the doped glasseous layer within the trench into the surrounding substrate. Ions are implanted to form the planned source/drain region. Dopant is outdiffused from the second polysilicon layer to form the planned buried contact junction wherein the dopant surrounding the trench provides a conduction channel between the source/drain region and the adjoining buried contact junction.
摘要:
A new method for forming planarized high quality oxide shallow trench isolation is described. A nitride layer overlying a pad oxide layer is provided over the surface of a semiconductor substrate. A plurality of isolation trenches is etched through the nitride and pad oxide layers into the semiconductor substrate wherein there is at least one first wide nitride region between two of the isolation trenches and at least one second narrow nitride region between another two of the isolation trenches. A high density plasma (HDP) oxide layer is deposited over the nitride layer filling the isolation trenches wherein the HDP oxide deposits more thickly in the first region over the wide nitride layer and deposits more thinly in the second region over the narrow nitride layer and wherein the difference in step heights of the HDP oxide between the first region and a region overlying an isolation trench is a first height. A layer of spin-on-glass is coated over the HDP oxide layer wherein the difference in step heights of the spin-on-glass material between the first region and the region overlying an isolation trench is a second height smaller than the first height. The spin-on-glass layer and portions of the HDP oxide layer in the first region are etched away. The spin-on-glass layer and HDP oxide layer remaining are polished away wherein the substrate is planarized.
摘要:
A microloading quantification apparatus is comprising a supporting substrate, a first bonding pad deposited upon the supporting substrate, a second bonding pad deposited upon the supporting substrate, and an etched conductive pattern deposited upon the supporting substrate and operably connected to the first bonding pad and the second bonding pad. Methods for the formation and application of the microloading quantification apparatus to quantify the variation of the microloading effect as a result of modifications of the set of parameters of integrated circuit processing particularly those of the plasma dry etch are described.
摘要:
A method for forming a stacked container capacitor for use within integrated circuits. Formed successively upon a semiconductor substrate is a first dielectric layer, a second dielectric layer and a patterned mask layer. Within an isotropic etch process, the first dielectric layer etches slower than the second dielectric layer. By means of an anisotropic etch process employing the patterned mask layer as a mask, an aperture is etched at least partially through the first dielectric layer. By means of an isotropic etch process employing the patterned mask layer as a mask, the second dielectric layer is etched to yield a ledge formed above the first dielectric layer and below the patterned masking layer. The patterned mask layer is then removed. Formed then into the anisotropically and isotropically etched aperture is a first polysilicon layer, a third dielectric layer and a second polysilicon layer. Finally, the filled isotropically etched aperture is planarized until there is exposed a flange of the first polysilicon layer formed into the ledge.