Abstract:
An electronic lock assembly is actuated by a key including a transponder. The key is received within a coil assembly of the lock assembly. The key engages a switch that powers the coil assembly. The coil assembly generates a magnetic field that energizes the transponder. The transponder transmits a signal received by a controller. The controller actuates the lock assembly responsive to the received signal to move a locking member to an unlocked position. The key may then move to unlatch a latch associated with the lock assembly. As the key provides the energy required for unlatching the latch further energization of the motor is not required. The lock assembly provides for the actuation and energization of the transponder with small amounts electrical energy such that the lock assembly may be powered by commercially available batteries for a practical operational life.
Abstract:
Techniques for routing a payload of a first network protocol, which includes header information for a second network protocol, include communicating a packet. In a circuit block, a first type for the first network protocol and a second type for the second network protocol are determined. The circuit block stores a classification that indicates a unique combination of the first type and the second type. A general purpose processor routes the packet based on the classification. Processor clock cycles are saved that would be consumed in determining the types. Furthermore, based on the classification, the processor can store an offset value for aligning the header relative to a cache line. The circuit block can store the packet shifted by the offset value. The processor can then retrieve from memory a single cache line to receive the header, thereby saving excess loading and ejecting of cache.
Abstract:
A combination lock includes various features that make the lock manipulation-resistant. The lock has a rocker arm with a curved underside section that contacts a roller on a cam that rotates when the lock dial is rotated. The smooth curve and an angled contact portion on the rocker arm causes the force applied to the rocker arm by the roller to be gradual rather than abrupt, ensuring that the contact point between the rocker arm and the roller is unpredictable. The lock may also include various spring-biased relocking devices that are biased away from the travel path of the bolt when the back cover is attached to the housing. The biasing force in the relocking device causes the device to move into the travel path of the bolt when the back cover is displaced or removed, preventing the bolt from moving to an unlocked position. The lock may also include a toothed washer having a trapezoidal tooth and a corresponding trapezoidal notch in a tube in the lock housing to eliminate transfer of rotation from one wheel to another. The trapezoidal shapes eliminate air gaps between the tooth and the notch, tightening the dial span of the lock.
Abstract:
An integrated photosensitive device with a metal-insulator-semiconductor (MIS) photodiode constructed with one or more substantially continuous layers of semiconductor material and with a substantially continuous layer of dielectric material.
Abstract:
A floor cleaning device (10) includes a housing (40) and a container (43) removably received by the housing. A suction nozzle (18, 18′, 18″) is fluidly connected with the container and with a suction source (52) when the container is received by the housing. A filter (114) is selectively fluidly connected with the container and with the suction source. A float (170) selectively closes the fluid connection of the filter with the container. The filter and the float may be removable as a unit (42) from the cleaning device. The nozzle may be removable, allowing an appropriate nozzle to be selected according to the type of floor surface to be cleaned.
Abstract:
A hydrate of an acid addition bis-salt of an anthranilic acid derivative is produced by a process which comprises: (a) combining, in any order, the anthranalic acid derivative, a pharmaceutically acceptable organic solvent, an excess of water and a pharmaceutically acceptable strong acid to form a mixture; (b) warming the mixture until a clear solution forms; (c) filtering the solution while it is warm, to yield a filtrate; and (d) recovering the hydrate as defined above from the filtrate. The hydrate has a defined number of moles of water of crystallisation and possesses better storage stability and dissolution characteristics than conventionally produced hydrates of such acid addition his-salts.
Abstract:
An upright vacuum cleaner (A) includes an upright housing section (B) and a nozzle section (C). A cyclonic airflow dirt and dust separating chamber (54) is defined in said upright housing section. A suction source (E) pulls air and entrained dirt, dust, and other contaminants through a main suction opening (26) formed in the underside (24) of the nozzle and into the cyclonic airflow chamber (54). The cyclonic airflow chamber causes the suction airstream to travel in a cyclonic path such that the entrained contaminants are separated therefrom and deposited into a dirt container (52) that defines the chamber (54). A main filter element (K) filters residual contaminants from the suction airstream between the chamber and the suction source. The main filter element is preferably made from high-density polyethylene porous filter media. A final filter assembly (F) filters the suction airstream discharged by the suction source to ensure that the air discharged into the atmosphere is contaminant free, including those contaminants introduced into the airstream by the suction source itself.
Abstract:
A vacuum cleaner includes a first housing defining a cyclonic airflow chamber and a second housing defining a main suction opening that is in communication with an inlet of the cyclonic chamber. A suction source has a suction airstream inlet in communication with an outlet of the cyclonic chamber, and establishes a suction airstream that enters said main suction opening, passes through said cyclonic chamber, and passes to an outlet of said suction source. A substantial portion of particulates entrained in the suction airstream are separated therefrom when said suction airstream moves in a cyclonic fashion through the cyclonic chamber. A main filter assembly, preferably including filter medium comprising polytetrafluoroethylene (PTFE), is located in the cyclonic chamber so that a suction airstream moving from the main suction opening to the inlet of said suction source by way of the cyclonic airflow chamber passes through the filter medium thereof after said airstream moves in a cyclonic fashion within the cyclonic airflow chamber to remove residual particulates from the suction airstream before it leaves the cyclonic chamber. A HEPA filter can be provided to filter the suction airstream exhausted through the outlet of the suction source prior to the airstream being discharged from the vacuum.
Abstract:
A processor complex architecture facilitates accurate passing of transient data among processor complex stages of a pipelined processing engine. The processor complex comprises a central processing unit (CPU) coupled to an instruction memory and a pair of context data memory structures via a memory manager circuit. The context memories store transient “context” data for processing by the CPU in accordance with instructions stored in the instruction memory. The architecture further comprises data mover circuitry that cooperates with the context memories and memory manager to provide a technique for efficiently passing data among the stages in a manner that maintains data coherency in the processing engine. An aspect of the architecture is the ability of the CPU to operate on the transient data substantially simultaneously with the passing of that data by the data mover.