Abstract:
A computer-implemented method, system, and computer program product are provided for positioning an unmanned autonomous vehicle (UAV) in a long term evolution radio access network. The method includes acquiring, by a processor-device, a position of the UAV with a global position system. The method also includes determining, by the processor-device, physical distances from the UAV to each of a plurality of user equipment (UE) responsive to a time-of-flight from the UAV to each of the plurality of UE. The method additionally includes generating, by the processor-device, radio environment maps for each of the plurality of UE with signal-to-noise ratios (SNR) from each of the plurality of UEs to the UAV. The method further includes selecting, by the processor-device, a determined position for the UAV as a position with a minimum SNR in the REMs. The method also includes commanding the UAV to move to the determined position.
Abstract:
A system for implementing a wireless communication network is provided. The system includes a plurality of unmanned aerial vehicles (UAVs) forming a wireless multi-hop mesh network constituting a backhaul. A given one of the UAVs includes a radio access network (RAN) agent configured to determine at least one UAV configuration for optimized coverage of one or more user equipment (UE) devices in a terrestrial zone, a haul agent configured to coordinate an optimization of the backhaul based at least in part on the at least one UAV configuration determined by the RAN agent, and a core agent configured to implement a distributed core architecture among the plurality of UAVs. The system further includes a controller configured to control the plurality of UAVs based on information received from at least one of the agents.
Abstract:
A system, method, and computer program product are provided for blue-printing interference for mobile access in an unlicensed spectrum of a synchronous scheduled cellular access system. The system includes a cellular base station having a processor. The processor constructs and executes an intelligent measurement schedule of clients for uplink transmissions to obtain access measurements for the uplink transmissions. The intelligent measurement schedule is constructed for scalable access measurement overhead. The access measurements indicate interference dependencies between the clients. The processor estimates an interference topology and statistics of the interference topology, from the access measurements to form an interference blueprint. The processor adjusts the intelligent measurement schedule to overschedule the clients for the uplink transmissions to reduce spectrum utilization loss while minimizing client transmission collisions, based on the interference blueprint. The processor initiates the uplink transmissions for the clients in accordance with the adjusted intelligent measurement schedule.
Abstract:
A system and method for network-wide broadcasting, including identifying interference dependencies between base stations (eNBs) to generate one or more single frequency network (SFN) clusters for one or more broadcast sessions. The generating of SFN clusters includes performing a controlled decrease in transmit diversity gain for each of the sessions by progressively creating smaller SFN clusters, iteratively creating the smaller SFN clusters until a target modulation and coding scheme (MCS) threshold is met to generate a plurality of SFN clusters, and selecting an SFN cluster with a maximum common MCS for all SFN clusters in a set. Resource block (RB) allocation is integrated with the generating of the SFN clusters to determine maximum system utility, and the system utility considers the sum of the utilities of broadcast and unicast flows. Network-wide broadcasting is controlled based on the determined maximum system utility.
Abstract:
A computer-implemented method for dynamic provisioning of Wi-Fi capacity in areas using a centralized radio access network (C-RAN) architecture is presented. The computer-implemented method includes introducing a set of access points (APs) in a network for providing capacity required to serve a plurality of users accessing heterogeneous content, introducing a set of remote radio heads (RRHs) in the network acting as transmit/receive points, tracking traffic fluctuations, and adapting front-haul configurations at a granularity of epochs, where measurements from previous epochs serve as input to drive current epochs.
Abstract:
Methods and a system are provided for enabling coexistence of WIFI and Long Term Evolution (LTE) in a wireless communication system. A method includes embedding in a data sequence, by a base station capable of transmitting and receiving LTE frames, a channel reservation packet that (i) is detectable by a WIFI receiver and (ii) reserves a particular one of a plurality of available unlicensed communication channels for a transmission duration of the data sequence. The method further includes transmitting, by the base station, the data sequence including the embedded channel reservation packet.
Abstract:
An interference alignment system for communication structures that includes a single cell channel comprising an access point node, and a full bipartite interference channel (FBIC) configuration of a plurality of receiving nodes and a plurality of transmitting nodes. Each receiving node sees an interfering signal from all transmitting nodes. The access point node of the single cell channel provides a single node having downlink channels to all receiving nodes in the FBIC, and all of the uplink channels from the FBIC are to the single access point node to the single cell channel.
Abstract:
A method implemented in a wireless communications system including a first uplink (UL) client device, a second UL client device, a first downlink (DL) client device, and an access point (AP) is disclosed. The method comprises the following steps in this order: a) determining interference alignment (IA) solution between the first and second UL client devices and the first device; and b) determining, according to the IA solution, receive filter U0 for the AP and precoder V0 for the AP to improve a UL stream rate and a DL stream rate. Other methods, systems, and apparatuses also are disclosed.
Abstract:
Systems and methods for improving Long Term Evolution (LTE)-WiFi coexistence in a network, including configuring one or more LTE nodes for asynchronous access and synchronous transmission to bridge LTE and WiFi access modes. A channel is reserved for LTE transmission in the one or more LTE nodes, and a supplementary WiFi module is provided in the one or more LTE nodes for sensing the channel for occupancy and for broadcasting a reservation signal on the channel prior to the LTE transmission. Contention window sizes are scaled linearly by increasing the contention window sizes proportionally to a subframe collision rate to maintain throughput fairness to the WiFi, and synchronous transmission from the one or more LTE nodes to one or more User Devices (UEs) is performed by activating the unlicensed carrier for a reserved time period.
Abstract:
Disclosed are systems, methods and structures that provide improved spatial reuse of spectral resources in small-cell wireless networks including WiMAX, LTE, LTE-Advanced, etc. Advantageously, the systems and method disclosed while leveraging beamforming for spatial reuse across small cells also decouple it from per-frame scheduling at a small cell base station thereby allowing for beam selections to be computed with a granularity measured in seconds. In realizing these advantages, systems, methods and structures disclosed integrate beam selection with client association.