Abstract:
Techniques for scheduling assignment (SA) transmissions in device-to-device (D2D) communications are described. A D2D user equipment (UE) may use a block of time resources for SA transmissions. A D2D UE may transmit an SA transmission relatively quickly after determining that D2D data is to be transmitted to another D2D UE, relative to having to wait for specified time resources to send an SA transmission. The D2D data may then be transmitted following the SA transmission, reducing latency for transmission of the D2D data. It may be desirable for vehicle-to-vehicle (V2V) transmissions to have a relatively low latency to provide data from one vehicle to another with sufficient time for a vehicle to take action while moving at relatively high rates of speed.
Abstract:
Methods, systems, and devices are describe for signaling protocols for device-to-device discovery operations in a wireless communication system. A user equipment (UE) may be communicating with a serving base station using a first frequency in a first frequency band. The UE may transmit, to the serving base station, information associated with performing a discovery scan procedure on a second frequency in a second frequency band during a discovery scan interval. The first frequency may be different from the second frequency. The UE may identify a capability to skip one or more downlink transmissions from the serving base station during the discovery scan interval.
Abstract:
Methods, systems, and devices are describe for signaling protocols for proximity service functions in a wireless communication system. A first wireless device may identify a group identity parameter associated with a multicast transmission of multimedia content. The first wireless device may map the identified group identity parameter to an identification parameter associated with at least one proximity service (ProSe) relay wireless device. The first wireless device may receive the multicast transmission of the multimedia content via the at least one ProSe relay wireless device based on the mapping of the identified group identity parameter to the identification parameter.
Abstract:
A communications system includes a plurality of different types of small coverage area base stations, e.g., femto cell base stations, WiFi access points and Bluetooth access points within a macro cell. Different user equipment (UE) devices, e.g., different smartphones, include different capabilities. In order for UE devices and small coverage area base stations with compatible capabilities to efficiently discover one another, the various small coverage area base stations and various UE devices utilize the macro cell communications band and macro cell communication protocol to coordinate device discovery and exchange discovery information and control information which allows a UE device to access a compatible small coverage area base station and subsequently communicate user data, e.g., traffic data, with the UE device.
Abstract:
Methods, systems, and devices are described for synchronizing a user equipment (UE) in a device-to-device communications network. The UE may scan for a synchronization signal transmitted from another UE in the network. A synchronization frame including a plurality of slots to use may be identified based at least in part on a result of the scanning. The identified synchronization frame may be analyzed to select a slot to use from the plurality of slots of the synchronization frame. A synchronization signal may be transmitted using the identified synchronization frame and the selected slot.
Abstract:
Methods, systems, and devices are described that provide for D2D synchronization. The methods, systems, and/or devices may include tools and techniques that provide for synchronizing a mobile device based on detection of a reliability alarm. A reliability alarm may be used between mobile devices, which is transmitted and/or received on specific D2D resources. Since the resources are reserved for the reliability alarm, a mobile device which was previously isolated from network synchronization will be able to receive the reliability alarm that a reliable synchronization signal is close when it moves within range of a reliable device. Once a reliability alarm is received the mobile device may free other resources to allow it to receive synchronization signals from the reliable devices. The mobile device may then synchronize with the network based on the received synchronization signals and transmit its own reliability alarm for subsequent isolated devices to use.
Abstract:
Methods, systems, and devices are described for transmissions and retransmissions of scheduling assignment (SA) information, and for content of SA transmissions. SAs may be transmitted during an initial communications period, followed by data transmissions for a certain time period. A device may monitor for transmissions during the SA period and then monitor for data transmissions during periods indicated in a received SA. SAs may be retransmitted according to a retransmission pattern that may provide time or frequency diversity patterns in order to enhance reception of SAs at a receiving device. Retransmission patterns may be determined based on a resource from an SA resource pool that is used for an initial transmission of the SA.
Abstract:
Apparatuses, systems, and devices are described for transmissions and retransmissions of device-to-device (D2D) communications. A D2D message may be transmitted during an initial communications period, followed by one or more retransmissions. A device may transmit an initial transmission, determine a time hopping pattern for the retransmission(s), and determine a transmission resource for the retransmission(s) based at least in part on a resource of the initial transmission and the time hopping pattern. The messages may include, for example, a scheduling assignment (SA) for data transmission, or data transmissions from a transmitting device. Time hopping patterns may be determined based on times and/or frequencies of the initial transmission. A base station may transmit a message to a transmitting device that indicates one or more time hopping patterns that are to be used for the transmissions.
Abstract:
Methods, systems, and devices are described for switching a mode of operations in device to device (D2D) communications. A UE within the coverage area of a base station may communicate directly with other UEs using a centralized transmission resource schedule. Prior to experiencing radio link failure (RLF), the UE may determine that switching parameters have been met and transition to an intermediate mode based on a distributed transmission schedule using a pool of resources established by the base station. In one example, the switching parameters may be received from the base station in a connection response message. In another example, the UE may send a switching request to the base station prior to initiating the transition to the intermediate mode. In some cases, after the transition to the intermediate mode, the UE may experience a radio link failure and transition to a distributed mode using a predetermined pool of resources.
Abstract:
Methods and apparatus for controlling interference with regard to important control signals, e.g., synchronization signals and broadcast channel signals, are described. A configurable base station monitors for and receives signals from other base stations in its local vicinity and determines the implemented frame timings corresponding to the other deployed base stations. If possible, the configurable base station selects to use a frame timing offset which is different from the frame timing offsets being used by the other base stations. In some embodiments, symbol level and subframe level synchronization are maintained between the base stations; however, frame level synchronization may, and sometimes does vary. Different adjacent base stations may, and sometimes do, intentionally offset their frame boundaries by multiples of a subframe.