Abstract:
The present disclosure, for example, relates to one or more techniques for indicating a frame format for transmissions using unlicensed radio frequency spectrum bands. A UE may receive, from a base station, a frame format indicator associated with a transmission opportunity for transmissions in an unlicensed radio frequency spectrum band. The UE may determine a time-division duplexing (TDD) configuration for the transmission opportunity based at least in part on the frame format indicator.
Abstract:
Signaling and procedural considerations are disclosed for uplink multiflow operations in user equipment configured for carrier aggregation. Advanced wireless networks may take advantage of unused capacity of neighboring cells by configuring network nodes and UEs to both receive on the downlink and transmit on the uplink to multiple cells or network nodes. Implementing multiflow on UE for the uplink transmission process may cause issues in various channels, signaling, and procedural operations that may be addressed through data and control signaling the techniques disclosed herein.
Abstract:
Techniques are described for wireless communication. One method for wireless communication at a base station includes contending for access to a shared channel of a shared radio frequency spectrum band, and multiplexing first component carrier (CC) communication windows and second CC communication windows in the shared channel. A duration of orthogonal frequency domain multiplexed (OFDM) symbols of the first CC communication windows may be different from a duration of OFDM symbols of the second CC communication windows, and the multiplexing may occur on the shared channel upon winning contention for access to the shared channel. One method for wireless communication at a user equipment (UE) includes monitoring a shared channel of a shared radio frequency spectrum band for a first CC Listen Before Talk (LBT) frame, and receiving, in a second CC preamble, an indication of the first CC LBT frame.
Abstract translation:技术描述为无线通信。 一种用于在基站进行无线通信的方法包括竞争对共享射频频带的共享信道的访问,以及在共享信道中复用第一分量载波(CC)通信窗口和第二CC通信窗口。 第一CC通信窗口的正交频域多路复用(OFDM)符号的持续时间可以不同于第二CC通信窗口的OFDM符号的持续时间,并且在获得争用访问共享信道时在共享信道上可能发生复用 渠道。 在用户设备(UE)的无线通信的一种方法包括:监视用于第一CC在线聆听(LBT)帧的共享射频频带的共享信道,并且在第二CC前导码中接收第一CC CC LBT框架。
Abstract:
Techniques for indicating active channel state information reference signal (CSI-RS) configurations for a user equipment (UE) are disclosed. The UE may be configured with multiple CSI-RS configurations and may receive signaling indicating which of its CSI-RS configurations are active. Improved performance may be obtained by dynamically signaling the active CSI-RS configurations. In one example, the UE may receive first signaling (e.g., upper-layer signaling) indicating a plurality of CSI-RS configurations configured for the UE. The UE may receive second signaling (e.g., lower-layer signaling) indicating at least one active CSI-RS configuration for the UE. The active CSI-RS configuration(s) may include all or a subset of the plurality of CSI-RS configurations. The UE may perform at least one communication task based on the at least one active CSI-RS configuration for the UE. The communication task(s) may include de-rate matching, CSI reporting, cell set management, etc.
Abstract:
Methods, systems, and devices are described for supporting common reference signaling in wireless communications systems. Some configurations introduce a phase discontinuity between common reference signal (CRS) transmissions on different subframes. This may address issues that may arise when a reduced CRS periodicity is utilized. Indicators may also be transmitted from base stations to user equipment (UEs) to indicate whether phase continuity may be assumed or not. Some configurations may support CRS sequence initialization. These tools and techniques may utilize an extended CRS sequence periodicity, which may increase the number of CRS sequences transmitted by a cell.
Abstract:
Methods, systems, and devices are described for wireless communication at a device. A device may distinguish a preamble sent from a device configured for a first RAT (e.g., WLAN, Wi-Fi, etc.) from a preamble sent from a device configured for a second RAT (e.g., LTE, LTE-A, LTE-U, etc.). A wireless device associated with a second RAT may transmit a dual-use preamble over a contention-based frequency channel. The dual-use preamble may function as a valid preamble for a first RAT and may be received and decoded by devices associated with the first RAT in addition to devices associated with the second RAT. The dual-use preamble may also include a signature associated with the second RAT. The signature may be embedded with the preamble such that it minimizes interference with the valid preamble and be detected by devices associated with the second RAT.
Abstract:
In some aspects, a method for performing wireless communication includes configuring a set of virtual cells for user equipments (UEs). One or more virtual cells of the set is associated with at least one set of parameters. The method also includes transmitting information, to the UEs, regarding the set of the virtual cells, and operating, for a same virtual cell, according to a same set of parameters for some or all of the UEs. In other aspects, a method for performing wireless communications includes receiving, from a node, information regarding, for a UE, a set of virtual cells associated with a set of parameters. The method also includes communicating with the node. The communication is based on a virtual cell and its associated set of parameters.
Abstract:
Methods, systems, and devices for wireless communication are described. Wireless devices may use enhanced carrier aggregation (eCA) to increase the throughput of a communications link, and control schemes for reducing signaling overhead may be employed to support eCA operation. For instance, downlink control information (DCI) supporting resource grants on a plurality of component carriers (CC) may be provided. These joint grants of resources may be used in addition to individual resource grants. A resource allocation granularity associated with the joint grant of resources may be based on the number of CCs scheduled by a resource grant message. The resource allocation granularity may be a function of whether uplink or downlink CCs are scheduled, and it may be determined based on a location of or channel associated with the resource grant message. A receiving device may identify allocated resources based on the scheduled CCs and resource allocation granularity.
Abstract:
A communication environment with carrier aggregation (CA) is disclosed in which a UE is configured for communication at a first time with a first network node via a primary component carrier (PCC) and a second network node via a secondary CC (SCC). At a second time, the UE is configured for communication with a third network node via the SCC at a second time. The UE maintains communication with the first network node via the PCC without triggering handover at the UE during the establishing communication with the third network node.
Abstract:
Techniques are described for wireless communications utilizing multiple clear channel assessment (CCA) procedures for access to a radio frequency spectrum band. A first CCA procedure is performed to determine availability of the radio frequency spectrum band and to contend for use of the radio frequency spectrum band among a number of coordinated operators transmitting on the radio frequency spectrum band. A successful first CCA procedure results in winning the contention for the radio frequency spectrum band for a transmission period that is coordinated among the number of coordinated operators. Upon the successful first CCA procedure, a second CCA procedure is performed during a discontinuous transmission (DTX) period in the transmission period to determine continued availability of the radio frequency spectrum band. The timing of the DTX periods is determined based on timing of radio transmissions having priority use of the radio frequency spectrum band.