Abstract:
The present disclosure relates to a communication technique and system for converging, with IoT technology, a 5G communication system for supporting a higher data transmission rate beyond a 4G system. The present disclosure may be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cards, health care, digital education, retail business, security and safety related services, etc.), on the basis of the 5G communication technology and IoT associated technology. According to the present invention, in a method of receiving a MAC PDU, when an unused value is included in a received MAC PDU, the MAC PDU is received through a multicast channel, and the unused value is included in a sub-header of the MAC PDU, the sub-header and a payload portion corresponding to the sub-header are ignored and the remaining sub-header and payload portion are processed.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present invention provides a method for transmitting a scheduling request (SR) in a wireless communication system. A SR transmission method for a terminal according to the present invention includes, receiving first information and second information for SR configuration, transmitting the SR if a SR timer based on the first information and the second information is expired, and wherein the first information comprises SR configuration information for a primary cell and a secondary cell, and wherein the second information is an integer value for configuring the SR timer.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.A method for a terminal to receive a service through different wireless communication systems is provided. The method includes identifying whether a request for use of a second wireless communication system that uses a second band is sensed with respect to the terminal that performs communications with a base station of a first wireless communication system through a first band and the second band, when the request for use of the second wireless communication system is sensed, transmitting a message including information indicating a change of user equipment (UE) capability information, and reporting the changed UE capability information based on the message.
Abstract:
A communication method of a terminal for saving a battery of a terminal and reducing a signaling overhead when small data are processed is provided. The communication method includes receiving, from a base station, a first message including at least one of first information indicating whether a first signaling optimization is allowed for the terminal, or second information indicating whether a second signaling optimization is allowed for the terminal, transmitting, to the base station, a second message including at least one of third information indicating whether the first signaling optimization is supported by the terminal, or fourth information indicating whether the second signaling optimization is supported by the terminal, and receiving, from the base station, a third message including fifth information indicating a signaling optimization supported for the terminal.
Abstract:
A method and apparatus for managing multiple Timing Advance Groups (TAGs) operating with different timings are provided for use in a Long Term Evolution (LTE) system. The method for managing multiple TAGs at a base station of a wireless communication system supporting carrier aggregation according to an exemplary embodiment of the present invention includes categorizing a plurality of carriers into at least one TAG according to a predetermined rule, assigning a TAG index to each TAG, transmitting the TAG index to a terminal, generating a Timing Advance Command (TAC) for synchronization, and transmitting the TAC to the terminal in a random access process. The method and apparatus for managing TAGs according to exemplary embodiments of the present invention is capable of informing of the timing advance group to which each carrier belongs and managing multiple timing advance groups efficiently without signaling overhead.
Abstract:
A method and apparatus for managing multiple Timing Advance Groups (TAGs) operating with different timings are provided for use in a Long Term Evolution (LTE) system. The method for managing multiple TAGs at a base station of a wireless communication system supporting carrier aggregation according to an exemplary embodiment of the present invention includes categorizing a plurality of carriers into at least one TAG according to a predetermined rule, assigning a TAG index to each TAG, transmitting the TAG index to a terminal, generating a Timing Advance Command (TAC) for synchronization, and transmitting the TAC to the terminal in a random access process. The method and apparatus for managing TAGs according to exemplary embodiments of the present invention is capable of informing of the timing advance group to which each carrier belongs and managing multiple timing advance groups efficiently without signaling overhead.
Abstract:
A data transmission method and an apparatus to communicate data on multiple carriers in the mobile communication system are provided. A random access method of a terminal in a mobile communication system including primary and secondary cells operating on multiple carriers according to the present invention includes communicating data after random access in the primary cell, receiving, when the random access is triggered in the secondary cell, information for use in the secondary cell random access from the primary cell, transmitting a preamble in the secondary cell based on the received information, monitoring the primary cell to receive a Random Access Response for the secondary cell, and applying, when the Random Access Response for the secondary cell is received, the information carried in the Random Access Response to the secondary cell in which the preamble has been transmitted.
Abstract:
A data transmission method and an apparatus to communicate data on multiple carriers in the mobile communication system are provided. A random access method of a terminal in a mobile communication system including primary and secondary cells operating on multiple carriers according to the present invention includes communicating data after random access in the primary cell, receiving, when the random access is triggered in the secondary cell, information for use in the secondary cell random access from the primary cell, transmitting a preamble in the secondary cell based on the received information, monitoring the primary cell to receive a Random Access Response for the secondary cell, and applying, when the Random Access Response for the secondary cell is received, the information carried in the Random Access Response to the secondary cell in which the preamble has been transmitted.
Abstract:
A data communication method of a terminal of a mobile communication system is provided. The data communication method includes transmitting a first message including location-related information of the terminal to a base station, receiving a second message including a Wireless Local Area Network (WLAN) Access Point (AP) list corresponding to the location-related information of the terminal, and scanning, if the WLAN AP list includes at least one WLAN AP, for WLAN APs included in the WLAN AP list.
Abstract:
The present disclosure relates to a 5G or 6G communication system for supporting higher data transmission rates. A method and device disclosed herein can address the problem of signalling-based MDT override in inter-RAT cell reselection or inter-RAT handover.