Abstract:
Disclosed is a sounding reference signal transmission method which is efficient in an uplink wireless telecommunications system using a multiple antenna technique and sounding reference signal hopping. A terminal is equipped with a plurality of antennas, and a base station receives the sounding reference signal transmitted from these antennas and estimates the uplink channel state of each antenna. The sounding reference signal performs frequency hopping so that the base station determines the channel condition for the entire bandwidth to which data is transmitted in the uplink system. In this environment, the sounding reference signal is transmitted through an antenna pattern through the entire data transmission bandwidth of the uplink system for each antenna of the terminal without additional overhead.
Abstract:
The present disclosure provides a method for feeding back aperiodic CSI in a flexible TDD reconfiguration cell. The method includes a UE receiving information about signaling transmitted from an eNB to acquire locations of subframes corresponding to CH and CL, wherein CH and CL correspond to different subframe sets, respectively. The method also includes the UE detects UL DCI information carrying an aperiodic CSI request, on a CSI request subframe. The method also includes the UE feeds back aperiodic CSI specific to a corresponding CSI subframe set to the eNB, on a corresponding UL subframe. The embodiments of the present disclosure, according to another aspect, provide a terminal. According to the solutions disclosed in the present disclosure, the terminal acquires indication information of CSI subframe sets during feeding back the aperiodic CSI, by implicitly or explicitly defining the CSI subframe sets, so as to trigger aperiodic CSI feedback specific to CH and CL in a flexible TDD reconfiguration cell, thus improving the system performance.
Abstract:
A Physical Downlink Shared CHannel (PDSCH) transmission data method is provided. A User Equipment (UE) receives cross-carrier scheduling information in a PDCCH of a cell for scheduling. The cross-carrier scheduling information carries scheduling information indicating at least one PDSCH in at least one sub-frame of a cell being scheduled in cross-carrier scheduling. The UE processes data of PDSCH corresponding to the instruction according to received cross-carrier scheduling information. The UE sends a HARQ-ACK message to a base station according to the processed result. The peak rate of the UE is increased, and the requirement for higher throughput of the UE is satisfied.
Abstract:
The present invention provides an uplink control information transmitting method and apparatus. In the method, when a user equipment (UE) is configured with an uplink carrier in an unlicensed spectrum, the UE transmits uplink control information through a pre-defined location and a pre-defined format in a licensed spectrum and/or a pre-defined location and a pre-defined format in an idle unlicensed spectrum according to an uplink (UL) grant transmitted from a base station and the UCI to be transmitted. According to the technical solution provided by the present invention, the UCI is flexibly transmitted in the licensed spectrum or in the idle unlicensed spectrum, thereby improving transmission efficiency and reducing impact on downlink signal scheduling when the UE is configured with the uplink carrier in the unlicensed spectrum and transmits the UCI, and further improving LTE network efficiency.
Abstract:
The disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). A method for operating a terminal is provided. The method includes detecting, scheduling assignment (SA) of another terminal in a sensing window based on transmission time intervals (TTIs) with different lengths in a resource pool; detecting a receiving power of a scheduled data channel based on the SA and a receiving energy of each sub-channel of each subframe; determining resources for data transmission based on the SA, the receiving power and the receiving energy; and transmitting data on the resources.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure provides a method for transmitting a sidelink signal. The method comprises: determining a Physical Sidelink Control CHannel (PSCCH) transmission mode allowed in a PSCCH transmission resource pool and a Physical Sidelink Shared CHannel (PSSCH) transmission mode allowed in a PSSCH transmission resource pool, respectively; determining a resource for transmitting a PSCCH and a resource for transmitting a PSSCH from the PSCCH transmission resource pool and the PSSCH transmission resource pool respectively; and transmitting the PSCCH according to the determined PSCCH transmission mode and the resource for transmitting the PSCCH and transmitting the PSSCH according to the determined PSSCH transmission mode and the resource for transmitting the PSSCH. The present disclosure also provides a corresponding device and storage media.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present invention provides a method of a base station for supporting an inter-system handover from an evolved packet system (EPS) system to a 5th generation (5G) system. The present application provides a method for transmitting HARQ-ACK information, including steps of: detecting, by a UE, a PDCCH and receiving a PDSCH scheduled by the PDCCH; for one slot of one carrier, determining, according to a configured slot pattern and a configured PDCCH monitoring occasion, the HARQ-ACK occasion and the number of HARQ-ACK bits occupied by the one slot; and, generating, by the UE, an HARQ-ACK codebook according to the HARQ-ACK occasion and the number of HARQ-ACK bits occupied by the one slot, and transmitting HARQ-ACK information. By the method of the present invention, the number of HARQ-ACK bits to be fed back within each slot is reduced, and the feedback overhead is reduced; moreover, the number of bits of the generated HARQ-ACK codebook changes semi-statically, so that the confusion between a base station and a UE is avoided.
Abstract:
The present application relates to the field of communication technologies, and relates to a method for processing information and a terminal device, the method for processing information includes: determining a corresponding feedback resource based on received indication information; receiving sidelink data transmitted by a second UE; and, transmitting feedback information of the sidelink data on the sidelink data. In the present application, the problem of implementing feedback of HARQ-ACK information and channel state information in the sidelink communication is addressed, and the mode of transmitting the sidelink data is further optimized, thereby improving spectral efficiency on the sidelink channel.
Abstract:
The present disclosure provides an uplink signal transmission method, a terminal, and base station. The terminal receives, from a base station, control information for an uplink scheduling, the control information including information indicating a reference starting position of a physical uplink shared channel (PUSCH); and transmits, to the base station, data based on the information indicating the reference starting position of the PUSCH. The information indicating the reference starting position of the PUSCH includes a starting symbol and a starting position preceding the starting symbol.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present application provides a method for transmitting uplink control information (UCI), comprising: detecting a physical el downlink control channel (PDCCH) and receiving a physical downlink shared channel (PDSCH) scheduled by the PDCCH, by a user equipment (UE); determining, by the UE, hybrid automatic repeat request acknowledge (HARQ-ACK) information to be fed back and physical uplink control channel (PUCCH) resource for transmitting the UCI according to at least one of the following: slot lengths of downlink bandwidth part (BWP) and uplink BWP, HARQ-ACK codebook information and UE's processing capability requirements; transmitting, by the UE, the HARQ-ACK information on the PUCCH resource. The method of the present invention may support a method for determining the HARQ-ACK codebook while multiple PUCCH resources and multiple slot lengths.