摘要:
A method of forming a strained semiconductor channel, comprising: forming a relaxed SiGe layer on a semiconductor substrate; forming a dielectric layer on the relaxed SiGe layer and forming a sacrificial gate on the dielectric layer, wherein the dielectric layer and the sacrificial gate form a sacrificial gate structure; depositing an interlayer dielectric layer, which is planarized to expose the sacrificial gate; etching to remove the sacrificial gate and the dielectric layer to form an opening; forming a semiconductor epitaxial layer by selective semiconductor epitaxial growth in the opening; depositing a high-K dielectric layer and a metal layer; and removing the high-K dielectric layer and metal layer covering the interlayer dielectric layer by planarizing the deposited metal layer and high-K dielectric layer to form a metal gate. A semiconductor device manufactured by this process is also provided.
摘要:
The present invention provides a semiconductor device, which is formed on a semiconductor substrate, comprising a gate stack, a channel region, and source/drain regions, wherein the gate stack is on the channel region, the channel region is in the semiconductor substrate, the source/drain regions are embedded in the semiconductor substrate, and each of the source/drain regions comprises a sidewall and a bottom, a second semiconductor layer being sandwiched between the channel region and a portion of the sidewall distant from the bottom, a first semiconductor layer being sandwiched between the semiconductor substrate and at least a portion of the bottom distant from the sidewall, and an insulating layer being sandwiched between the semiconductor substrate and the other portions of the bottom and/or the other portions of the sidewall. The present invention also provides a method for forming the semiconductor device. The present invention helps preventing the dopants in the source/drain regions from diffusing into the substrate.
摘要:
A method for forming a semiconductor device is provided, wherein a step of forming an S/D region comprises: determining an interface region comprising an active region of a partial width abutting an isolation region, and forming an auxiliary layer covering the interface region; removing a semiconductor substrate of a partial thickness in the active region using the auxiliary layer, a gate stack structure and the isolation region as a mask, so as to form a groove; and growing a semiconductor material in the groove for filling into the groove. A semiconductor device having a material of the semiconductor substrate sandwiched between an S/D region and an isolation region is further provided. The present invention is beneficial to reduce current leakage.
摘要:
There is provided a fin transistor structure and a method of fabricating the same. The fin transistor structure comprises a fin formed on a semiconductor substrate, wherein a bulk semiconductor material is formed between a portion of the fin serving as the channel region of the transistor structure and the substrate, and an insulation material is formed between remaining portions of the fin and the substrate. Thereby, it is possible to reduce the current leakage while maintaining the advantages of body-tied structures.
摘要:
There is provided a fin transistor structure and a method of fabricating the same. The fin transistor structure comprises a fin formed on a semiconductor substrate, wherein an insulation material is formed between a portion of the fin serving as the channel region of the transistor structure and the substrate, and a bulk semiconductor material is formed between remaining portions of the fin and the substrate. Thereby, it is possible to reduce the current leakage while maintaining the advantages such as low cost and high heat transfer.
摘要:
A method for forming a semiconductor device is provided, wherein a step of forming an S/D region comprises: determining an interface region comprising an active region of a partial width abutting an isolation region, and forming an auxiliary layer covering the interface region; removing a semiconductor substrate of a partial thickness in the active region using the auxiliary layer, a gate stack structure and the isolation region as a mask, so as to form a groove; and growing a semiconductor material in the groove for filling into the groove. A semiconductor device having a material of the semiconductor substrate sandwiched between an S/D region and an isolation region is further provided. The present invention is beneficial to reduce current leakage.
摘要:
The present application discloses a semiconductor structure and a method for manufacturing the same. The semiconductor structure comprises a semiconductor substrate; an epitaxial semiconductor layer formed on two side portions of the semiconductor substrate; a gate stack formed at a central position on the semiconductor substrate and abutting the epitaxial semiconductor layer, the gate comprising a gate conductor layer and a gate dielectric layer which is sandwiched between the gate conductor layer and the semiconductor substrate and surrounding the lateral surfaces of the gate conductor layer; and a sidewall spacer formed on the epitaxial semiconductor layer and surrounding the gate. The method for manufacturing the above semiconductor structure comprises forming raised source/drain regions in the epitaxial semiconductor layer utilizing the sacrificial gate. The semiconductor structure and the method for manufacturing the same can simplify the fabrication process for an ultra-thin SOI transistor and reduce the ON-state resistance and power consumption of the transistor.
摘要:
The present disclosure provides a semiconductor device and a method for manufacturing the same. The semiconductor device comprises: a semiconductor layer comprising a plurality of semiconductor sub-layers; and a plurality of fins formed in the semiconductor layer and adjoining the semiconductor layer, wherein at least two of the plurality of fins comprise different numbers of the semiconductor sub-layers and have different heights. According to the present disclosure, a plurality of semiconductor devices with different dimensions and different driving abilities can be integrated on a single wafer.
摘要:
The present application discloses a semiconductor structure and a method for manufacturing the same. The semiconductor structure according to the present invention adjusts a threshold voltage with a common contact, which has a portion outside the source or drain region extending to the back-gate region and provides an electrical contact of the source or drain region and the back-gate region, which leads to a simple manufacturing process, an increased integration level and a lowered manufacture cost. Moreover, the asymmetric design of the back-gate structure further increases the threshold voltage and improves the performance of the device.
摘要:
Tensile stress is applied to the channel region of an N-type metal oxide semiconductor (NMOS) transistor by directly forming a material having a tensile stress, for example, tungsten, in the contact holes on the source region and drain region of the NMOS. Then, the dummy gate layer in the gate stack of the NMOS transistor is removed, so as to further reduce the counter force of the gate stack on the channel region, thereby increasing the tensile stress in the channel region, enhancing the drift mobility of the carrier, and improving the performance of the transistor. The present invention avoids using a separate stress layer to create tensile stress in the channel region of an NMOS transistor, which advantageously simplifies the transistor manufacturing process and improves sizes and performance of the transistor.