Abstract:
A system for rapidly heating a vehicle engine when the engine is below a pre-determined temperature allows for improved fuel efficiency after a vehicle cold-start. The system includes an organic Rankine cycle (ORC) loop having a two-phase ORC fluid traveling circuitously through a conduit. The ORC fluid is vaporized by a power electronics cooling device and by an evaporator in thermal communication with exhaust waste heat. The vaporized ORC fluid is passed through an expander to generate electrical power. When the vehicle engine is below the pre-determined temperature, heat from the vaporized ORC fluid is transferred directly or indirectly to the engine. When the vehicle engine is at or above the pre-determined temperature, heat from the vaporized ORC fluid is instead transferred to an alternate heat sink.
Abstract:
Two-phase jet impingement cooling devices and electronic device assemblies are disclosed. In one embodiment, a cooling device includes a manifold having a fluid inlet surface, a fluid outlet surface defining an outlet manifold, and a fluid outlet. The fluid inlet surface includes an inlet channel fluidly coupled to a first jet region and a second jet region each including a plurality of jet orifices and a plurality of surface features extending from the fluid inlet surface. A target plate is coupled to the fluid outlet surface of the manifold that includes a target surface, a first heat sink, and a second heat sink. A cover plate is coupled to the fluid inlet surface of the manifold, which includes a fluid inlet port fluidly coupled to the inlet channel of the manifold, and a fluid outlet port fluidly coupled to the fluid outlet of the manifold.
Abstract:
Pool boiling systems, cooling systems configured to cool one or more heat generating portions of a vehicle, and methods of maintaining a functional orientation of a pool boiling unit are disclosed. A pool boiling system may include the pool boiling unit and a stabilizing unit coupled to the pool boiling unit. The stabilizing unit maintains the pool boiling unit in a functional orientation across a plurality of operating orientations of the pool boiling system.
Abstract:
Two-phase cooling systems, power electronics modules, and methods for extending a maximum heat flux point of a two-phase cooling device are disclosed. In one embodiment, a method of operating a two-phase cooling device having an inlet, a chamber fluidly coupled to the inlet, and a heat transfer surface configured to receive heat flux from a heat generating device includes detecting at least one two-phase process parameter of the two-phase cooling device, and controlling a temperature of a coolant fluid at the inlet such that it is a first inlet temperature Tin1 when the at least one two-phase process parameter is less than a threshold. The method further includes controlling a temperature of the coolant fluid at the inlet such that it is a second inlet temperature Tin2, where Tin2 is less than Tin1.
Abstract:
Two-phase cooling systems, power electronics modules, and methods for extending a maximum heat flux point of a two-phase cooling device are disclosed. In one embodiment, a method of operating a two-phase cooling device having an inlet, a chamber fluidly coupled to the inlet, and a heat transfer surface configured to receive heat flux from a heat generating device includes detecting at least one two-phase process parameter of the two-phase cooling device, and controlling a temperature of a coolant fluid at the inlet such that it is e a first inlet temperature Tin1 when the at least one two-phase process parameter is less than a threshold. The method further includes controlling a temperature of the coolant fluid at the inlet such that it is a second inlet temperature Tin2, where Tin2 is less than Tin1.
Abstract:
Jet impingement cooling apparatuses having non-uniformly sized jet orifices for producing an array of impingement jets that impinge a target surface are disclosed. In one embodiment, a cooling apparatus includes at least one fluid inlet channel, at least one fluid outlet channel, a target surface, and a jet orifice surface that is offset from the target surface. The jet orifice surface includes an array of jet orifices fluidly coupled to the at least one fluid inlet channel, wherein each individual jet orifice of the array of jet orifices has an area corresponding to a distance of the individual jet orifice to the at least one fluid outlet channel such that individual jet orifices closer to the at least one fluid outlet have an area that is smaller than individual jet orifices further from the at least one fluid outlet. Power electronics modules are also disclosed.
Abstract:
Jet-impingement, two-phase cooling apparatuses having alternating vapor outlet channels are disclosed. In one embodiment, a cooling apparatus includes a fluid inlet channel, a jet orifice surface, and a target surface. The jet orifice surface includes an array of jet orifices. The jet orifices are arranged in rows. Coolant fluid within the fluid inlet channel flows through the array of jet orifices as impingement jets. The jet orifice surface further includes a plurality of vapor guide channels positioned between the plurality of jet orifice rows and parallel to a first axis such that the jet orifice surface is defined by alternating jet orifice rows and vapor guide channels. The target surface has a plurality of surface fins extending from a surface of the target surface and parallel to a second axis that is orthogonal to the first axis, wherein the jet orifice surface is positioned proximate the surface fins.
Abstract:
A morphing aerodynamic structure includes a body with an outer covering, a bridle attached to the body, and a light-response polymer disposed on at least one of the outer covering and the bridle. The light-responsive polymer is configured to change shape when illuminated with a laser such that at least one of an angle of attack, roll, pitch and yaw of the morphing aerodynamic structure is at least partially controlled without the use of a mechanical or pneumatic control unit.
Abstract:
A hybrid cooling system of an electric machine is contemplated. The hybrid cooling system includes a propeller assembly comprising a propeller, a housing comprising a stator and a rotor coupled to the propeller, and one or more capacitors, a gate drive electronics board, a cold plate, a substrate, power electronics coupled to substrate and the cold plate, a pump for pumping liquid coolant, and a heat exchanger. The liquid coolant from the pump contacts the gate drive electronics board, the cold plate, the substrate, and the power electronics for cooling the gate drive electronics board, the cold plate, the substrate, and the power electronics, and the propeller is configured to generate air that cools the stator and the rotor.
Abstract:
A morphing aerodynamic structure includes a body with an outer covering, a bridle attached to the body, and a light-response polymer disposed on at least one of the outer covering and the bridle. The light-responsive polymer is configured to change shape when illuminated with a laser such that at least one of an angle of attack, roll, pitch and yaw of the morphing aerodynamic structure is at least partially controlled without the use of a mechanical or pneumatic control unit.