Abstract:
To provide a memory-writing device which can simply and reliably write desired data to a nonvolatile memory of an electronic device, connection is made with an ECU to perform write processing to write write data from the memory-writing device to a flash ROM by copying a write-control program from the external portion to a RAM and executing the write-control program, and by sequentially sending the foregoing write-control program and write data to this ECU together with sending, at a predetermined timing, write-control information required for the ECU to execute the write-control program, the write-control program and the write-control information are stored in a freely attachable and removable first ROM and the write-control information stored in the first ROM is read and sent to the ECU at a memory-rewriting device to cause the write processing to be performed in the ECU. According to this device, an ECU of differing specifications can be supported merely by exchanging the first ROM.
Abstract:
Drive information is updated to always include the recording/playback conditions determined from the most recent learning process. The data recording medium 101 has a data recording area 104 for recording data, and a drive information area 401 for recording drive information 401a. The drive information 401a includes a plurality of drive-specific information records 401b. Each of the plural drive-specific information records 401b defines the operating conditions of the data recording and playback apparatus when a data recording and playback apparatus that can load and access the data recording medium 101 reads or writes data. The plural drive-specific information records 401a are arranged chronologically according to when the information was recorded to the data recording medium 101.
Abstract:
An optical disk apparatus performing either one of recording and reproduction of an optical disk in which groove-shaped groove tracks and land tracks present between the groove tracks are alternately connected to each other in a spiral shape, includes: a recording and reproduction unit for recording a signal in at least one continuous groove track and at least one continuous land track, and then reproducing the signal from the groove track and the land track; a detector for detecting a quality of the signal recorded and reproduced by the recording and reproduction unit; a control parameter setting unit for setting a control parameter related to at least one of the recording and the reproduction of the optical disk; and a controller for changing the control parameter set by the control parameter setting unit, repeating the recording and reproduction performed by the recording and reproduction unit and detection performed by the detector every time the control parameter is changed, and determining the control parameter based on the quality of the signal detected by the detector.
Abstract:
Optimum movement of first and last signal pulses based on the data pattern is determined before data recording to record marks in the correct position. A specific pattern signal is read from a disc track and digitized with an appropriate slice level by the digitizing circuit (115). A pulse position offset measuring circuit (120) then measures specific edge intervals in the resulting digital signal. Movement of the first and last pulse by the pulse moving circuit (110) is then set so that the offset between the measured edge interval and a predetermined standard edge interval is ideally zero.
Abstract:
A method of recording data optically to an optical disk having a plurality of sectors, in which each sector has a region to be recorded with data, the data is recorded in units of blocks, and the block includes a predetermined number of sectors and is a data unit including error correction codes. In recording data related to a content by dividing and recording the data in a plurality of sectors continuously, dummy data to be used for extracting a clock in PLL for data reproduction is recorded on a region adjacent before a sector from which data recording is started. The data related to the contents is recorded on sectors following the region recorded with the dummy data.
Abstract:
An optical disk includes a land and a groove. The optical disk has a data efficiency of 80% or more. Data is recorded on both the land and the groove. A distance between the center of the land and the center of the groove adjacent to the land is 0.28 μm or more. Thus, an optical disk having a storage capacity of 25 GB or more can be provided.
Abstract:
A disk array device maintains data reliability with few performance degradation problems. In a RAID 4 or RAID 5 disk array device, redundant data created during disk degeneration with a device control module is transferred to a memory of a subsystem control module. The memory is backed up with a battery. The redundant data is held in memory until a writing operation to disk drives is completed. Then, when recovering after a momentary power supply interruption, the write data and parity data stored in the memory are written out without writing data from the disk drive. When recovering after a momentary power supply interruption and the disks are normal, the redundant same-group data is read from disk drives other than those on which the data that is to be written and the parity are stored and based on those and the write data, new redundant data is created and written to the object disk.
Abstract:
An optical disk includes a land and a groove. On this optical disk, data is recorded on both the land and the groove. A distance between the center of the land and the center of the groove adjacent to the land is 0.28 &mgr;m or more. The optical disk has a data efficiency of 80% or more. Thus, an optical disk having a storage capacity of 25 GB or more can be provided.
Abstract:
A data recording medium suitable for an optical disk such as DVD is disclosed. The data recording medium has a plurality of sectors. The sector has a header area to store address information of the sector, a gap area for power calibration of a laser beam used for data recording, a data recording area to store a plurality of modulated codes obtained by modulating the data, a postamble area located immediately after the data recording area, and a buffer area to separate sectors. The modulated code includes information to demodulate a modulated code located immediately before each modulated code. The postamble area stores information to demodulate the final demodulated code in the data recording area. A data pattern stored in the postamble area includes synchronization pattern, and is determined based on a DSV of the data pattern, or satisfying the run length limitation.
Abstract:
To provide a memory-writing device which can simply and reliably write desired data to a nonvolatile memory of an electronic device, connection is made with an ECU to perform write processing to write write data from the memory-writing device to a flash ROM by copying a write-control program from the external portion to a RAM and executing the write-control program, and by sequentially sending the foregoing write-control program and write data to this ECU together with sending, at a predetermined timing, write-control information required for the ECU to execute the write-control program, the write-control program and the write-control information are stored in a freely attachable and removable first ROM and the write-control information stored in the first ROM is read and sent to the ECU at a memory-rewriting device to cause the write processing to be performed in the ECU. According to this device, an ECU of differing specifications can be supported merely by exchanging the first ROM.