摘要:
A method of manufacturing a silicon carbide semiconductor device having a MOS structure includes preparing a substrate made of silicon carbide, and forming a channel region, a first impurity region, a second impurity region, a gate insulation layer, and a gate electrode to form a semiconductor element on the substrate. In addition, a film is formed on the semiconductor element to provide a material of an interlayer insulation layer, and a reflow process is performed at a temperature about 700° C. or over in an wet atmosphere so that the interlayer insulation layer is formed from the film. Furthermore, a dehydration process is performed at about 700° C. or lower in an inert gas atmosphere after the reflow process is performed.
摘要:
It is an object to provide a CCD solid-state image sensor, in which an area of a read channel is reduced and a rate of a surface area of a light receiving portion (photodiode) to an area of one pixel is increased. There is provided a solid-state image sensor, including: a first conductive type semiconductor layer; a first conductive type pillar-shaped semiconductor layer formed on the first conductive type semiconductor layer; a second conductive type photoelectric conversion region formed on the top of the first conductive type pillar-shaped semiconductor layer, an electric charge amount of the photoelectric conversion region being changed by light; and a high-concentrated impurity region of the first conductive type formed on a surface of the second conductive type photoelectric conversion region, the impurity region being spaced apart from a top end of the first conductive type pillar-shaped semiconductor layer by a predetermined distance, wherein a transfer electrode is formed on the side of the first conductive type pillar-shaped semiconductor layer via a gate insulating film, a second conductive type CCD channel region is formed below the transfer electrode, and a read channel is formed in a region between the second conductive type photoelectric conversion region and the second conductive type CCD channel region.
摘要:
It is an object of the present invention to provide an image sensor having a high ratio of a surface area of a light receiving element to a surface area of one pixel. The above-described object is achieved by an inventive solid-state imaging device unit comprising solid-state imaging devices arranged on a substrate according to the present invention. The solid-state imaging device comprises a signal line formed on the substrate, an island shaped semiconductor placed over the signal line, and a pixel selection line connected to an upper portion of the island shaped semiconductor. The island shaped semiconductor comprises a first semiconductor layer disposed in a lower portion of the island shaped semiconductor and connected to the signal line, a second semiconductor layer disposed adjacent to an upper side of the first semiconductor layer, a gate connected to the second semiconductor layer via an insulating film, an electric charge accumulator comprising a third semiconductor layer connected to the second semiconductor layer and carrying a quantity of electric charges which varies in response to a light reception, and a fourth semiconductor layer disposed adjacent to an upper side of the second semiconductor layer and the third semiconductor layer and connected to the pixel selection line. The solid-state imaging devices are arranged on the substrate in a honeycomb configuration.
摘要:
There is provided a semiconductor device formed of a highly integrated high-speed CMOS inverter coupling circuit using SGTs provided on at least two stages. A semiconductor device according to the present invention is formed of a CMOS inverter coupling circuit in which n (n is two or above) CMOS inverters are coupled with each other, each of the n inverters has: a pMOS SGT; an nMOS SGT, an input terminal arranged so as to connect a gate of the pMOS SGT with a gate of the nMOS SGT; an output terminal arranged to connect a drain diffusion layer of the pMOS SGT with a drain diffusion layer of the nMOS SGT in an island-shaped semiconductor lower layer; a pMOS SGT power supply wiring line arranged on a source diffusion layer of the pMOS SGT; and an nMOS SGT power supply wiring line arranged on a source diffusion layer of the NMOS SGT, and an n−1th output terminal is connected with an nth input terminal.
摘要:
In making a contact determination between an object and a display screen, a display apparatus of the present invention is capable of adjusting a region on which to make a contact determination in response to the displayed image in a liquid crystal panel, so that the influence by the displayed image can be suppressed. Moreover, for simplifying the contact determination process, the display apparatus sets solid a region in the picked-up image that is not a target of the contact determination, with a predetermined gradation value.
摘要:
A method of manufacturing a silicon carbide semiconductor device having a MOS structure includes preparing a substrate made of silicon carbide, and forming a channel region, a first impurity region, a second impurity region, a gate insulation layer, and a gate electrode to form a semiconductor element on the substrate. In addition, a film is formed on the semiconductor element to provide a material of an interlayer insulation layer, and a reflow process is performed at a temperature about 700° C. or over in an wet atmosphere so that the interlayer insulation layer is formed from the film. Furthermore, a dehydration process is performed at about 700° C. or lower in an inert gas atmosphere after the reflow process is performed.
摘要:
A method for manufacturing a SiC semiconductor device includes: forming an impurity layer in a SiC layer; and forming an oxide film on the SiC layer. The forming the impurity layer includes: implanting an impurity ion in the SiC layer; forming a carbon layer on the SiC layer; heating the SiC layer for activating the implanted impurity in the SiC layer covered with the carbon layer; and removing the carbon layer from the SiC layer. The forming the carbon layer includes: coating a resist on the SiC layer; and heating the resist for evaporating organic matter in the resist so that the resist is carbonized. The forming the oxide film is performed after the removing the carbon layer.
摘要:
A manufacturing method of a silicon carbide semiconductor device includes the steps of: preparing a semiconductor substrate including a silicon carbide substrate, a drift layer and a first semiconductor layer; forming a plurality of first trenches in a cell portion; forming a gate layer on an inner wall of each first trench by an epitaxial growth method; forming a first insulation film on the surface of the semiconductor substrate; forming a gate electrode on the first insulation film for connecting to the gate layer electrically; forming a source electrode on the first insulation film for connecting to the first semiconductor layer in the cell portion; and forming a drain electrode connected to the silicon carbide substrate electrically.
摘要:
A method of forming a copper wiring layer, which includes forming a pattern of copper seed layer on a substrate, and forming a copper wiring pattern on the pattern of copper seed layer by means of electroless plating. At least one component of semiconductor device selected from the group consisting of the gate electrode, the source electrode, the drain electrode, and a wiring connected with at least one of these electrodes is formed by a method comprising forming a pattern of copper seed layer, and forming a copper wiring pattern on the pattern of copper seed layer by means of electroless plating.
摘要:
A semiconductor device includes a vertical field-effect transistor having a substrate of first conduction type in a substrate base, a drain electrode formed on a first surface of the substrate, an epitaxial layer of first conduction type formed on a second surface of the substrate, a source region of first conduction type formed on the semiconductor base, a source ohmic contact metal film in ohmic contact with the source region, trenches formed from the second surface of the semiconductor base, and a gate region of second conduction type formed along the trenches. The semiconductor device further includes a gate rise metal film in ohmic contact with the draw-out layer of the gate region on the bottom of the trenches and rising to the second surface of the semiconductor base, and a gate draw-out metal film connected to the gate rise metal film from the second surface of the semiconductor base.