Abstract:
A base station may configure an access beam group to include one or more antenna beams for communicating with one or more user equipment (UE). The base station may configure a backhaul beam group to include one or more antenna beams for communicating with one or more other base stations. The base station may monitor network traffic associated with the access beam group and/or the backhaul beam group, and may determine that the network traffic satisfies a condition. The base station may modify the access beam group and/or the backhaul beam group to add or remove at least one antenna beam based on determining that the network traffic satisfies the condition.
Abstract:
A device may determine first information associated with a plurality of carriers. The first information may be associated with a plurality of user devices connected to a base station via the plurality of carriers. The device may determine second information associated with the plurality of carriers. The second information may be associated with a plurality of user devices camping on the plurality of carriers. The device may selectively perform load balancing in association with the plurality of user devices camping on the plurality of carriers based on the first information and the second information.
Abstract:
A method for determining a Quality of Service (QoS) policy can be based on requested bandwidth. The method may initially receive a connection request which includes a requested bandwidth that corresponds to an application. The method may then determine a policy for an application data flow associated with the application based on the connection request. A bandwidth designation, which is based on the requested bandwidth, may be assigned to the application data flow based on the determined policy. Finally, the policy and the bandwidth designation may be provided so that a bearer can be assigned.
Abstract:
A method for determining a Quality of Service (QoS) policy can be based on requested bandwidth. The method may initially receive a connection request which includes a requested bandwidth that corresponds to an application. The method may then determine a policy for an application data flow associated with the application based on the connection request. A bandwidth designation, which is based on the requested bandwidth, may be assigned to the application data flow based on the determined policy. Finally, the policy and the bandwidth designation may be provided so that a bearer can be assigned.
Abstract:
A method, a device, and a non-transitory storage medium provide to store packet data network (PDN) connection data pertaining to a user equipment connected to a network; store locale-to-packet data network gateway (PGW) data, wherein the locale-to-PGW data includes mappings between locales and PGWs to be used when the user equipment is located in the locales; receive a locale update pertaining to the user equipment; query the locale-to-PGW data in response to the locale update; determine, based on a result of the query, whether the user equipment is to be re-anchored to a different PGW than a PGW to which the user equipment is currently anchored; invoke a re-anchoring procedure, in response to a determination that the user equipment is to be re-anchored to the different PGW; and omit to invoke the re-anchoring procedure, in response to a determination that the user equipment is not to be re-anchored.
Abstract:
A base station includes an antenna to receive frequency bands that include a first band associated with first signals carrying machine-two-machine (M2M) data and a second band associated with second signals carrying user equipment (UE) data. The base station further includes a baseband unit (BBU) that includes: a radio frequency (RF) interface configured to receive the first signals and the second signals, a digital front end (DFE) configured to generate first symbols based on the first signals and second symbols based on the second signals, a symbol processor configured to convert the first symbols into the M2M data and the second symbols into the UE data, and one or more processors configured to forward the M2M data to a first device and the UE data to a second device that differs from the first device.
Abstract:
A wireless telecommunications system may be configured to provide wireless service via unlicensed, licensed, and/or shared frequency bands (e.g., frequency bands that are shared with other telecommunications systems, and for which access is regulated by an external entity). A load balancing technique, described herein, may provide load balancing between licensed and shared frequency bands based on relative load of the licensed and shared networks, and/or other factors (e.g., a priority access license (“PAL”) of a base station to which the user device is attached). Techniques described herein may be useful in carrier aggregation, in which a user device may simultaneously attach to multiple carriers (e.g., a licensed carrier, along with a shared carrier and/or an unlicensed carrier).
Abstract:
A device may manage end-to-end traffic across a network based on adjusting Quality of Service (QoS) parameters. The device may receive performance requirements for packets corresponding to different applications and QoS levels within segments across the network, and measure performance values along the segments across the network. The device may also identify the application data flows and their associated network locations failing to meet performance values across network segments, and detect an application data flow failing to meet end-to-end (E2E) performance requirements. The device may determine network location(s) to adjust the QoS parameters of the detected application data flow, and adjust its QoS parameters at the determined network location(s) to bring the detected application data flow into compliance with its E2E performance requirements, while maintaining E2E performances compliance of other application data flows.
Abstract:
A device is configured to obtain network information indicating an amount of client devices, of each device type, registered in an operator network. The device is configured to obtain client device information identifying a client device and determine a device type of the client device based on the client device information. The device is configured to determine a frequency for the client device to use to communicate with the operator network based on the device type of the client device and the amount of client devices of each of the device types registered in the operator network. The device is configured to provide an instruction to the client device to use the frequency to communicate with the operator network.
Abstract:
One or more devices may be configured to store jurisdiction information that associates each of a plurality of base stations with at least one jurisdiction. The one or more devices may establish a session, between a first base station and a user device, that uses a frequency. The one or more device may record handover information based on the first base station handing over the session to a second base station. The handover information may indicate an amount of data used while the session is hosted by the first base station. The one or more devices may determine a particular jurisdiction associated with the first base station based on the jurisdiction information. The one or more devices may cause a particular rights holder to be compensated for use of the frequency based on the amount of data used while the session is hosted by the first base station.