Abstract:
A network device includes a media access controller (MAC) and a physical layer having an interface that communicates with the MAC. A first autonegotiation circuit attempts to establish a link using a first transceiver over a first media. A second autonegotiation circuit attempts to establish a link using a second transceiver over a second media. A media selector communicates with the interface and the first and second autonegotiation circuits. The media selector enables data flow from the first media to the MAC using the interface when a link is established first over the first media. The media selector enables data flow from the second media to the MAC using the interface when a link is established first over the second media.
Abstract:
An SMII interface circuit to communicate data synchronous with a clock signal having a rising edge and a falling edge. The interface circuit includes a transmit circuit that is responsive to the clock signal to generate a first transmit serial stream and a second transmit serial stream. A receive circuit, responsive to the clock signal, to generate a receive serial stream from two receive data streams. The receive serial stream having a operating frequency that is about twice the operating frequency of each of the two receive data streams. Transmit and receive ports corresponding to the transmit and receive circuits each include a single pin to communicate the serial transmit data and the receive serial stream.
Abstract:
A nonlinearity detection system for an analog to digital converter (ADC) comprises a signal generator that generates a periodic signal that is output to the ADC and that comprises first and second intervals. The periodic signal monotonically increases during the first interval and monotonically decreases during the second interval. A differentiator module communicates with the ADC and that generates an output signal that is based on an output of the ADC and a delayed output of the ADC. A nonlinearity detection module detects slope discontinuities in the output signal of the differentiator module.
Abstract:
A physical layer device including a first port, a second port, and a cable that has one end that communicates with the first port and an opposite end that communicates with the second port. A cable tester tests the cable to determine a cable status, which includes an open status, a short status, and a normal status. A pretest module senses activity on the cable and selectively enables testing depending upon the sensed activity. A test module transmits a test pulse on the cable, measures a reflection amplitude, calculates a cable length, and determines the cable status based on the measured amplitude and the calculated cable length. A frequency synthesizer communicates with the cable and that selectively outputs a plurality of signals at a plurality of frequencies on the first port. An insertion loss calculator receives the signals on the second port and that estimates insertion loss.
Abstract:
A physical layer device according to some implementations includes a cable tester that generates a test pulse on a cable and that determines a cable status including an open status, a short status, and a normal status. A cable impedance estimator communicates with the cable tester and estimates an impedance of the cable based on a reflection amplitude of the test pulse.
Abstract:
A scanned optical system for use in optical probing applications provides a large Field of View (FOV) for objective lenses having high Numerical Aperture (NA), such as Solid Immersion Lenses (SIL's). This enables high resolution imaging of semiconductor devices for such applications as laser probing, TIVA/LIVA, OBIRCH, and photon emission timing analysis. A hybrid scanning optics configuration is disclosed to provide high resolution imaging over a small area along with low resolution imaging over a large area.
Abstract:
A circuit that reduces external terminal count of a semiconductor chip, such as a communications chip or other type of chip that requires the generation of configuration codes, by reducing the number of external input terminals required for generating the configuration data. The circuit includes multiplexers, each of which selects output data or configuration data, and includes an output in communication with a respective external output terminal of the chip. A selector is connectable between a selected one of the external output terminals and an external input terminal in communication with a memory to serially input configuration data on that output terminal to the memory to configure the chip. Thus, configuration codes are generated for the chip using a reduced number of external input terminals, thereby reducing the overall external terminal count of the chip. The circuit and chip may be embodied on a network or Ethernet card.
Abstract:
A circuit that reduces external terminal count of a semiconductor chip, such as a communications chip or other type of chip that requires the generation of configuration codes, by reducing the number of external input terminals required for generating the configuration data. The circuit includes multiplexers, each of which selects output data or configuration data, and includes an output in communication with a respective external output terminal of the chip. A selector is connectable between a selected one of the external output terminals and an external input terminal in communication with a memory to serially input configuration data on that output terminal to the memory to configure the chip. Thus, configuration codes are generated for the chip using a reduced number of external input terminals, thereby reducing the overall external terminal count of the chip. The circuit and chip may be embodied on a network or Ethernet card.
Abstract:
A repeater set provides for delaying a character of data that passes through the repeater set from one receive channel to a set of transmit channels. In providing for the delay of a character, the repeater set includes a delay calculator for calculating a character delay value. The repeater set then receives a character that is to be provided on a transmit channel and delays the character in a delay module for a period of time equal to the character delay value. The character delay value is determined by the delay calculator by first calculating a bit delay value and then converting the bit delay value into the character delay value.
Abstract:
A secure repeater implementing data packet masking includes a programmable and selective, on a per port basis, delay disrupt response. A delay disrupt controller receives signals indicating retransmissions of fields from a data packet. These signals include a destination address field and a source address field. A plurality of memories, one associated with each port, determines the associated port's delay response to the data packet. Each memory stores a delay disrupt control code. When the delay disrupt control code for a particular port has a value indicating that the associated port is enabled to delay disruption of a data packet, security marking is disabled until the source address field is retransmitted from the particular port.