Abstract:
An installation for spectroscopic measurement includes a focusing system (2) for focusing a laser beam (3) on a sample (4) for analysis and a system (17) for collecting and spectroscopically analyzing light rays emitted by the plasma (15), this system (17) including, in particular, an optical fiber (18) for collecting light. The installation also includes a motor-driven system (23) for moving the optical fiber (18), an optical imaging system (25) for imaging the plasma in the form of an image, and a processor and control unit (24). The unit (24) is capable of analyzing the image formed by the optical imaging system in order to select a zone of interest and controlling the motor-driven system (23) in order to place the optical fiber in a position enabling it to collect light coming from the selected zone of interest in the plasma.
Abstract:
This disclosure relates generally to a sampling device, and more particularly, a sampling device that facilitates spectroscopic measurements with a variable path length and the necessary software controlled algorithms and methods for such a device.
Abstract:
This disclosure relates generally to a sampling device, and more particularly, a sampling device that facilitates spectroscopic measurements with a variable path length and the necessary software controlled algorithms and methods for such a device.
Abstract:
The invention provides methods and devices for generating optical pulses in one or more waveguides using a spatially scanning light source. A detection system, methods of use thereof and kits for detecting a biologically active analyte molecule are also provided. The system includes a scanning light source, a substrate comprising a plurality of waveguides and a plurality of optical sensing sites in optical communication with one or more waveguide of the substrate, a detector that is coupled to and in optical communication with the substrate, and means for spatially translating a light beam emitted from said scanning light source such that the light beam is coupled to and in optical communication with the waveguides of the substrate at some point along its scanning path. The use of a scanning light source allows the coupling of light into the waveguides of the substrate in a simple and cost-effective manner.
Abstract:
An inspection system for inspecting an internal component of a machine includes a remote controlled vehicle constructed to fit inside a desired portion of the machine; a controller operative to control an operation of the remote controlled vehicle; a tether coupled to the controller and to the remote controlled vehicle, wherein the tether is operative to transmit control signals from the controller to the remote controlled vehicle; and an imaging device extending from a front portion of the remote controlled vehicle and operative to view the internal component. The imaging device has a flexible articulating tip spaced apart from the front portion of the body.
Abstract:
This disclosure relates generally to a sampling device, and more particularly, a sampling device that facilitates spectroscopic measurements with a variable path length and the necessary software controlled algorithms and methods for such a device.
Abstract:
The invention relates to an optical measurement device for a reaction vessel, and a method therefor. An object is to measure the optical state within a reaction vessel in an efficient, rapid, and highly reliable manner, without an expansion of the device scale. The configuration includes: a vessel group in which two or more reaction vessels are arranged; a light guide stage having two or more linking portions to which front ends of light guide portions, which have a flexibility, that optically connect with the interior of the linked reaction vessels, are provided; a connecting end arranging body that has an arranging surface that arranges and supports along a predetermined path two or more connecting ends, to which back ends of the light guide portions, in which the front ends thereof are provided to the linking portions, are provided, the connecting ends are provided corresponding to the respective linking portions; a measurement device provided approaching or making contact with the arranging surface that has measuring ends that are successively optically connectable with the respective connecting ends along the predetermined path, and in which light from within the reaction vessels is receivable by means of optical connections between the connecting ends and the measuring ends; and a light guide switching mechanism that relatively moves the respective connecting ends arranged on the connecting end arranging body and the respective measuring ends such that they are successively optically connected.
Abstract:
Multiplexer for electromagnetic radiation, e.g. UV-light, in which a single electromagnetic radiation source (203) and a single electromagnetic radiation detector (223) are connectable in turn to a plurality of sample-containing units (207(a)-207(n)). The multiplexer comprises a sled (253) movable in relation to a fixed base (255) by an actuator (281).
Abstract:
A scanned optical system for use in optical probing applications provides a large Field of View (FOV) for objective lenses having high Numerical Aperture (NA), such as Solid Immersion Lenses (SIL's). This enables high resolution imaging of semiconductor devices for such applications as laser probing, TIVA/LIVA, OBIRCH, and photon emission timing analysis. A hybrid scanning optics configuration is disclosed to provide high resolution imaging over a small area along with low resolution imaging over a large area.
Abstract:
A scanned optical system for use in optical probing applications provides a large Field of View (FOV) for objective lenses having high Numerical Aperture (NA), such as Solid Immersion Lenses (SIL's). This enables high resolution imaging of semiconductor devices for such applications as laser probing, TIVA/LIVA, OBIRCH, and photon emission timing analysis. A hybrid scanning optics configuration is disclosed to provide high resolution imaging over a small area along with low resolution imaging over a large area.