Abstract:
A location to insert stack clearing code into a method to be executed in an execution environment of a computer system is determined. The stack clearing code is inserted into the location of the method. The stack clearing code is executed during execution of the method to clear a stack. Other embodiments are also described and claimed.
Abstract:
A stacked energy storage device (ESD) has at least two cell segments arranged in a stack. Each cell segment may have a first electrode unit having a first active material electrode, a second electrode unit having a second active material electrode, and an electrolyte layer between the active material electrodes. The ESD includes at least two sub-stacks, where the elements of each respective sub-stack are electrically coupled in series with other elements of the sub-stack. The sub-stacks may be placed in a single stack, and the sub-stacks may be electrically coupled in parallel, in series, or both, with other sub-stacks to create an ESD with a particular voltage and current capacity. The entire stack may be contained by a single pair of end caps.
Abstract:
An electrical switching apparatus comprises: a first terminal; a second terminal; separable contacts electrically connected between the first terminal and the second terminal; an operating mechanism structured to open and close the separable contacts; and an arc fault trip circuit cooperating with the operating mechanism and structured to trip open the separable contacts responsive to an arc fault condition. An inductor is electrically connected in series between the first terminal and the second terminal. A capacitor includes a first lead electrically connected between the inductor and the second terminal, and a second lead electrically connected to a ground or neutral conductor. The inductor and the capacitor are structured to cooperate with a power circuit impedance downstream of the second terminal to form a filter trap circuit.
Abstract:
Moisture can be detected in a refrigerant background such as HFC (Hydrofluorocarbon) HFC-134A and HFC-152A and exampled by HFC-23, HFC-32, HFC-143A, HFC-125, HFC-245FA, HFC-227EA, and the like. The system can include a light source operating at any one of several wavelengths within the water absorption bands at wavelengths such as 1.4, 1.9 and 2.7 μm and a detector that measures the transmitted light intensity through the HFC samples. In one variation, the light source is a tunable diode laser and the moisture level is determined by direct absorption and harmonic spectroscopy. Related techniques, apparatus, systems, and articles are also described.
Abstract:
Concentrations of a target analyte in a gas mixture containing one or more background analytes having potentially interfering spectral absorption features can be calculated by compensating for background analyte absorption at a target wavelength used to quantify the target analyte. Absorption can be measured at a reference wavelength chosen to quantify the concentration of the background analyte. Using a background gas adjustment factor or function, the absorption measured at the reference wavelength can be used to calculate absorption due to the background analyte at the target wavelength and thereby compensate for this background absorption to more accurately calculate the target analyte concentration in real or near real time. Additional background analytes can optionally be compensated for by using one or more additional reference wavelengths.
Abstract:
An arc fault circuit interrupter includes separable contacts, a neutral conductor, an operating mechanism structured to open and close the separable contacts, at least one current sensor structured to sense current flowing through the separable contacts and output a sensed current value; and a processor. The processor includes a first routine structured to provide parallel arc fault detection, a second routine structured to provide series arc fault detection, and a third routine structured to enable the first routine and disable the second routine for a predetermined time when the sensed current value is greater than a predetermined value and to enable the second routine and disable the first routine for the predetermined time when the sensed current value is less than the predetermined value.
Abstract:
A system and method for monitoring the remaining useable life, or “wellness,” of a contactor or motor starter, and for predicting impending faults of such a device, is disclosed. By monitoring actuating coil current, actuating coil voltage, line current, and/or line voltage, the present invention can calculate wellness metrics which, when compared to threshold values, may be used as indicators of remaining life and/or imminent failures. The invention also provides non-mechanical positive indications of proper closures and openings of contacts for safety interlocking.
Abstract:
A circuit breaker includes a first lug and second and third acoustic lugs electrically connected to a power circuit. Separable contacts are electrically connected in series between the first lug and the second acoustic lug. An operating mechanism opens and closes the separable contacts. A first acoustic sensor is coupled to the second acoustic lug and senses a first acoustic signal from the second acoustic lug. A second acoustic sensor is coupled to the third acoustic lug and senses a second acoustic signal from the third acoustic lug. The first and second acoustic signals are operatively associated with a power circuit fault. A current sensor senses a current flowing between the first and second lugs. A circuit inputs the sensed acoustic signals and the sensed current and detects and distinguishes a parallel arc fault or a series arc fault from the sensed acoustic signals and the sensed current.
Abstract:
Low concentrations of methane in a gas mixture containing a substantial concentration of carbon dioxide can be detected and quantified using absorption spectroscopy in the infrared spectral region. Absorption spectra can recorded using tunable diode lasers as the light source. Modulation of the laser signal and demodulation of the resultant detector response yields dependable measurements that may be conducted with very little maintenance in demanding environments.