Abstract:
A machine boot up protection structure for parallel power supply equipment provides a determination level to set the parallel power supply equipment in an ON condition. It has a control unit to receive a connection signal output by each of power supply units to compare with the determination level. If the comparison matches, all of the power supply units are activated to the ON condition. If the comparison does not match, all of the power supply units are set to an OFF condition. Thereby when the external power is not completely connected, some of the power supply units do not suffer from overloading and damaging.
Abstract:
A photosensitive composition and a color paste for making the photosensitive composition. The photosensitive resin composition comprises a photosensitive resin system; a pigment; a photo-reactive amphipathic molecule; and a solvent. The color paste for making the photosensitive composition comprises the pigment and the photo-reactive amphipathic molecule.
Abstract:
A display device includes a plurality of gate lines, data lines, first external gate tracking lines, and second external gate tracking lines. The first external gate tracking lines are substantially disposed in a border region of a substrate, and electrically connected with corresponding gate lines. The second external gate tracking lines are substantially disposed in the border region of the substrate, and electrically connected with corresponding gate lines. One of the first external gate tracking lines and a corresponding second external gate tracking line at least partially overlap with each other.
Abstract:
An LCD panel transmits the display data to sub-pixels in a zigzag pattern through a data line. The variation of the feed-through voltages of the sub-pixels may be modified by adjusting the ratios of the channel widths and the channel lengths of the TFTs in the sub-pixels to some predetermined ratios, or by adjusting the compensation capacitance to the coupling capacitance of the TFTs of the sub-pixels.
Abstract:
An active device, a pixel structure, and a display panel are provided. The pixel structure includes a scan line, a data line, an active device, a gate insulating layer, a pixel electrode, a capacitor electrode, and a capacitor dielectric layer. The active device includes a gate, a channel, a source, and a drain. The gate is electrically connected to the scan line. The source is electrically connected to the data line. The gate insulating layer is disposed between the gate and the channel. The pixel electrode is electrically connected to the drain. The capacitor electrode is located on the gate insulating layer. The capacitor dielectric layer is located between the capacitor electrode and the drain.
Abstract:
A display panel including an active device array substrate, an opposite substrate and a display medium is provided. The active device array substrate includes a substrate, scan lines, data lines, pixel units, and data signal transmission lines. The scan lines and data lines define a plurality of pixel regions on the substrate. Each pixel unit is disposed within one of the pixel regions respectively, and each pixel unit includes a plurality of sub-pixel units. The sub-pixel units within the same pixel unit are electrically connected with the same data line, and each sub-pixel unit within the same pixel unit is electrically connected with one of the scan lines respectively. Each data signal transmission line is electrically connected with one of the data lines, and an extending direction of the data signal transmission line is substantially parallel with an extending direction of the scan lines.
Abstract:
An active device array substrate is provided. First, a substrate having a display area and a sensing area is provided. Then, a first patterned conductor layer is disposed on the display area of the substrate. A gate insulator is disposed on the substrate. A patterned semiconductor layer, a second patterned conductor layer and a patterned photosensitive dielectric layer are disposed on the gate insulator, wherein the second patterned conductor layer includes a source electrode, a drain electrode and a lower electrode, the patterned photosensitive dielectric layer covering the second patterned conductor layer includes an interface protection layer disposed on the source electrode and the drain electrode and a photo-sensing layer disposed on the lower electrode. A passivation layer is then disposed on the substrate. After that, a third patterned conductor layer including a pixel electrode and an upper electrode is disposed on the passivation layer.
Abstract:
A machine boot up protection structure for parallel power supply equipment provides a determination level to set the parallel power supply equipment in an ON condition. It has a control unit to receive a connection signal output by each of power supply units to compare with the determination level. If the comparison matches, all of the power supply units are activated to the ON condition. If the comparison does not match, all of the power supply units are set to an OFF condition. Thereby when the external power is not completely connected, some of the power supply units do not suffer from overloading and damaging.
Abstract:
A pixel array is located on a substrate and includes a plurality of pixel sets. Each of the pixel sets includes a first scan line, a second scan line, a data line, a data signal transmission line, a first pixel unit, and a second pixel unit. The data line is not parallel to the first and the second scan lines. The data signal transmission line is disposed parallel to the first and the second scan lines and electrically connected to the data line. Distance between the first and the second scan lines is smaller than distance between the data signal transmission line and one of the first and the second scan lines. The first pixel unit is electrically connected to the first scan line and the data line. The second pixel unit is electrically connected to the second scan line and the data line.
Abstract:
A method for fabricating a pixel structure includes providing a substrate having a pixel area. A first metal layer, a gate insulator and a semiconductor layer are formed on the substrate and patterned by using a first half-tone mask or a gray-tone mask to form a transistor pattern, a lower capacitance pattern and a lower circuit pattern. Next, a dielectric layer and an electrode layer both covering the three patterns are sequentially formed and patterned to expose a part of the lower circuit pattern, a part of the lower capacitance pattern and a source/drain region of the transistor pattern. A second metal layer formed on the electrode layer and the electrode layer are patterned by using a second half-tone mask or the gray-tone mask to form an upper circuit pattern, a source/drain pattern and an upper capacitance pattern. A portion of the electrode layer constructs a pixel electrode.