Abstract:
A bicycle is provided having a unitary steering tube-crown member and a unitary crank arm-spindle member. A multistage aluminum 3D forging process is used to form the unitary members. This may allow the fabrication of components with substantially hollow interior areas to reduce weight, reduce part count while maintaining high strength and ductility. The multistage 3D forging process provided also allows the combination of multiple components into a single unitary part.
Abstract:
Disclosed herein is a method of manufacturing a door frame for a wind tower. The method includes a first step of forging a circular planar substance, thereby forming a through hole in a central portion of the substance, a second step of heating the substance that was processed in the first step, a third step of ring-rolling the heated substance around the through hole in an annular shape such that a circumstance of a center hole of the substance is equal to a length of a center line of the door frame, a fourth step of upset-forging the annular substance so that opposite sides of the substance are pressed to form linear sections, and a fifth step of fine-finishing the substance that was processed by the fourth step, thus completing the door frame.
Abstract:
The invention encompasses a method of forming a metallic article. An ingot of metallic material is provided, and such ingot has an initial thickness. The ingot is subjected to hot forging. The product of the hot forging is quenched to fix an average grain size of less than 250 microns within the metallic material. The quenched material can be formed into a three dimensional physical vapor deposition target. The invention also includes a method of forming a cast ingot. In particular aspects, the cast ingot is a high-purity copper material. The invention also includes physical vapor deposition targets, and magnetron plasma sputter reactor assemblies.
Abstract:
A pretensioner is provided, of which the cylinder, including a restriction portion, can be inexpensively formed, the cylinder having the restriction portion for positioning a gas generation unit to be mounted to a cylinder, and a pretensioner manufacturing method for manufacturing such a pretensioner is provided. In the pretensioner, since the cylinder is molded by forging, an inexpensive material compared with a stainless pipe member can be used for the molding. In addition, since the positioning portion can be molded during forging-molding for molding the entire cylinder, cost can be reduced even in this regard.
Abstract:
A pretensioner is provided, of which the cylinder, including a restriction portion, can be inexpensively formed, the cylinder having the restriction portion for positioning a gas generation unit to be mounted to a cylinder, and a pretensioner manufacturing method for manufacturing such a pretensioner is provided. In the pretensioner, since the cylinder is molded by forging, an inexpensive material compared with a stainless pipe member can be used for the molding. In addition, since the positioning portion can be molded during forging-molding for molding the entire cylinder, cost can be reduced even in this regard.
Abstract:
The invention relates to a method for manufacturing a hollow, elongated structural element, where a first and a second blank (1, 14) are led through an oven (2) for heating to working temperature and are led through rollers (3, 4) with profiled surfaces for pre-forming in one or more steps. The blanks are each led through a forging press with a number of cooperating dies, the blank being worked in a number of steps (5, 8, 11) into halves of an essentially finished product, having a cross-section substantially in the shape of a U-profile with a predetermined varying height, width and thickness of material along its length. The second blank (14) is essentially a copy of the first blank (1). In a final step (15) the blanks are joined together into a composite hollow structural element (18). The invention also relates to a structural element manufactured according to the method.
Abstract:
A container, in particular a container (30) with a tube-shaped wall (32), made of a light metal alloy for use as a reaction chamber in a process for manufacturing wafers, is such that the container wall (32) is made by way of extrusion or ring-rolling, and the container wall (32) is made from a metallic, aluminum-based material with a magnesium content between 1.2 and 2.0 wt. %; the elements Cu, Fe, Si are present in amounts less than 0.5 wt. %. This container wall (32) may also be shaped in one piece as container (30) with a base plate (42).