Abstract:
A pretensioner is provided, which can be partially changed in mechanical strength of in a cylinder, in addition, can be widely used. In the pretensioner, the cylinder is molded by forging, and a positioning portion as a high-strength portion is formed from a partition formed using a excess portion produced during the forging-molding. Therefore, while an outer circumferential shape of the cylinder is not changed, a specification of the positioning portion can be varied, the specification including a formation position of the positioning portion, an extension dimension of the positioning portion from the cylinder, and thickness of the positioning portion along a through direction of the cylinder.
Abstract:
A pretensioner is provided, which can be partially changed in mechanical strength of in a cylinder, in addition, can be widely used. In the pretensioner, the cylinder is molded by forging, and a positioning portion as a high-strength portion is formed from a partition formed using a excess portion produced during the forging-molding. Therefore, while an outer circumferential shape of the cylinder is not changed, a specification of the positioning portion can be varied, the specification including a formation position of the positioning portion, an extension dimension of the positioning portion from the cylinder, and thickness of the positioning portion along a through direction of the cylinder.
Abstract:
Cold extrusion procedures for obtaining metal elements such as for example bushings, nuts or other elements with dead or through holes, screws, standard and special shape extruded or pressed products, etc. on a machining center comprising a series of hydraulic presses connected to each other with an automatic movement system. The final drilling or shearing of the elements is advantageously carried out by a dedicated drilling or shearing unit, working at high speed, which can consist of a vertical mechanical press. The use of the plant comprising several hydraulic presses together with the rapid drilling or shearing unit makes it possible to achieve a high level of productivity.
Abstract:
A material member blanked from metal sheet is subjected to upsetting to form an annular peripheral portion that is thinner than the center part of the material inside the annular portion, and the thicker inside portion is formed into a concavity. The first intermediate product thus formed is drawn to form a cup-shaped case with an internal boss and/or an external boss, and an outside flange. The intermediate product can also be used to make gears and the like.
Abstract:
The invention encompasses a method of forming a metallic article. An ingot of metallic material is provided, and such ingot has an initial thickness. The ingot is subjected to hot forging. The product of the hot forging is quenched to fix an average grain size of less than 250 microns within the metallic material. The quenched material can be formed into a three dimensional physical vapor deposition target. The invention also includes a method of forming a cast ingot. In particular aspects, the cast ingot is a high-purity copper material. The invention also includes physical vapor deposition targets, and magnetron plasma sputter reactor assemblies.
Abstract:
Method and apparatus for providing a hollow, elongated construction element, for example for use as a vehicle front axle. The method includes (1) directing a first blank through a furnace (2) for heating the blank to a working temperature. The blank is directed between a pair of rollers (3, 4) having profiled surfaces, the blank being preformed in one or more steps to form an intermediate product having a predetermined profile along its longitudinal extent. The blank is fed to a forging press having a number of cooperating die pads, the blank being worked in a plurality of steps (5, 8, 11) to form a substantially finished product, having a cross section substantially in the form of a hat profile of predetermined varying height, width and material thickness along its length. A second blank (14), having essentially the same profile as the hat profile of the first blank in the dividing plane of the cooperating die pads, is placed in connection with the hat profile. In a later step (15), the first (1) and the second blank (14) are joined together, at least along their respective edges, to form a composite hollow construction element (18). One embodiment of the disclosed invention is also the construction element that is produced according to the above-described method.
Abstract:
A method for forming a helical pinion gear (12) for a rack and pinion steering apparatus (10) comprises the steps of: providing a cylindrical first blank (60) made of a deformable material and having an outer surface (68); providing a cylindrical second blank (100) made of a deformable material and having an outer surface (108); forming a bore (116) extending at least partially through the second blank (100); forming helical teeth (52) on the outer surface (108) of the second blank; and interconnecting the second blank (100) with the first blank (60) to form the helical pinion (12). The helical teeth (52) on the pinion (12) mesh with rack teeth (44) on a rack (16) in a rack and pinion steering apparatus (10).
Abstract:
A method for forming a cavity structure provided with a thin bottom plate is comprises the following steps. The first step is to deform plastically a part of a metal plate so as to form a cavity on one surface of a metal plate wherein the cavity has an oddly bottom surface provided with subsections being different from each other in depth. Simultaneously a protrusion is formed on the other surface of the metal plate by shifting an amount of metal corresponding to the cavity into the protrusion wherein the protrusion has substantially similar figure to the cavity. Then a coupling section, which keeps the protrusion integral with the metal plate, is formed so as to make the protrusion smaller than the cavity. And the protrusion is removed from the metal plate so as to make the other surface of the metal plate flat and to form the bottom plate of the cavity thin while remaining the coupling section.
Abstract:
A method of making a bicycle crank arm bar by casting, forging, rolling, heat molding, and cold forging. The bicycle crank arm has an elongated cavity, an axle end, and a pedal end.
Abstract:
The method for manufacturing a metal material with an intermediate hollow and two solid end portions includes a step for preparing a first mold for manufacturing a roughly-shaped metal material with a first inner solid end hollow and a lengthwise intermediate hollow of a preset length. A conical portion is formed around am outer end hole of the mold. The outer conical end of the metal material is pressed in the intermediate hollow to form a second outer end portion of the metal material. Thus, a finished product of metal material with two solid end portions and an intermediate hollow is manufactured. Such a method can surely simplify the processes of manufacture, lowing the cost of production, and strengthening the integrated structure of products.