Abstract:
The invention comprises a tire tread, and tire, and a method of forming a tire having the tire tread. Particular embodiments of the tire tread comprise a tread thickness bounded by a top side and a bottom side and opposing lateral sides and a groove extending into the tread thickness from the tread top side and terminating within a thickness of the tread at a groove bottom, the groove having a width defined by a pair of opposing sides and the groove bottom being spaced from the bottom side of the tread by an undertread thickness. Such tire tread further includes a plurality of strengthening members forming protrusions extending into the groove from the groove bottom and from at least one side of the pair of opposing groove sides, the plurality of strengthening members being arranged along a length of the groove.
Abstract:
A heavy duty pneumatic tire includes a tread portion provided with a pair of shoulder main grooves disposed axially outermost side, and at a center main groove between the shoulder main grooves to form a pair of middle portions. Each middle portion is provided with a middle sub groove, axially outer middle lateral grooves, and inner middle lateral grooves. The respective number of outer and inner middle lateral grooves are of from 40 to 50 in each middle portion. Each of the outer and inner middle lateral grooves includes a shallow bottom part having a depth smaller than that of the shoulder and center main grooves. The shallow bottom part is provided with a groove bottom sipe that extends along a longitudinal direction of each lateral grooves and includes a first portion, and a second portion having a depth smaller than the first portion.
Abstract:
A vehicle tire has outer shoulders and two tread halves. The vehicle tire includes a tire tread having six block rows and a plurality of circumferential grooves. Mutually adjacent ones of the block rows are separated from each other by a corresponding one of the plurality of circumferential grooves. Each of the block rows has a plurality of individual blocks and the individual blocks of each of the block rows are separated from each other by mutually parallel essentially straight transverse grooves running at an angle to the axial direction of the tire. The circumferential grooves includes first circumferential grooves having a maximum profile depth and second circumferential grooves. The block rows are arranged such that each tread profile half has two pairs of block rows. The pairs of block rows of each tread profile half are separated from each other by a corresponding one of the first circumferential grooves. The block rows of each of the pairs of block rows are separated from each other by a corresponding one of the second circumferential grooves. The second circumferential grooves have a second profile depth less than the maximum profile depth. A first portion of the transverse grooves defines first outlet locations to the first circumferential grooves and a second portion of the transverse grooves has first outlet locations to the outer shoulders. The transverse grooves have a depth approximately corresponding to the maximum profile depth at the first outlet locations. The transverse grooves define second outlet locations to a corresponding one of the second circumferential grooves. The transverse grooves have a depth corresponding to the second profile depth at the second outlet locations.
Abstract:
The condition of a road surface on which a vehicle is traveling is estimated accurately, using a tire having a general variable-pitch tire pattern for detection of a road surface condition. The tire for detection of a road surface condition has rows of blocks, the total number N of the circumferentially disposed blocks being 10 or more and the number n of lug grooves, each provided with a joining section connecting circumferentially adjacent blocks, being in the range of (N/2)≦n≦(N−5). The vibrations of the tire are detected by an acceleration sensor and are subjected to a rotational order ratio analysis by a rotational order ratio analyzing unit. And the road surface condition is estimated by comparing the amplitude P of the rotational order component of the tire vibrations extracted by a rotational order component extracting unit with a predetermined threshold value K.
Abstract:
Blocks are formed on a tread surface of a pneumatic tire by main grooves extending in the tire circumferential direction and lateral grooves which intersect with the main grooves. The blocks include: center blocks which are positioned in a center region in the tire width direction; shoulder blocks which are positioned on both side regions in the tire width direction; and mediate blocks which are positioned in an intermediate region between the center blocks and the shoulder blocks. The lateral groove formed between the shoulder blocks and the lateral groove formed between the mediate blocks which are positionally displaced from each other in the tire circumferential direction are connected to each other via the main groove by an auxiliary block.
Abstract:
A studless tire improved in on-ice performance as well as on-snow performance is disclosed. The tread portion is provided with tread grooves to have a land ratio in a range of from 0.65 to 0.75. The tread grooves including an axially inner circumferential groove, an axially outer circumferential groove and a plurality of sipes disposed on each side of the tire equator. The land ratio of a crown region and the land ratio of a shoulder region are each larger than the land ratio of a middle region, wherein the crown region is defined between the widthwise center lines of the inner circumferential grooves, the middle region is defined between the widthwise center line of the axially inner circumferential groove and the widthwise center line of the axially outer circumferential groove, and the shoulder region is defined between the widthwise center line of the outer circumferential groove and a tread edge of the tread portion.
Abstract:
A heavy duty pneumatic tire includes a tread portion provided with a pair of shoulder main grooves disposed axially outermost side, and at a center main groove between the shoulder main grooves to form a pair of middle portions. Each middle portion is provided with a middle sub groove, axially outer middle lateral grooves, and inner middle lateral grooves. The respective number of outer and inner middle lateral grooves are of from 40 to 50 in each middle portion. Each of the outer and inner middle lateral grooves includes a shallow bottom part having a depth smaller than that of the shoulder and center main grooves. The shallow bottom part is provided with a groove bottom sipe that extends along a longitudinal direction of each lateral grooves and includes a first portion, and a second portion having a depth smaller than the first portion.
Abstract:
A heavy duty tire comprises a tread portion provided with a central circumferential groove, a crown circumferential groove on each side thereof and crown axial grooves extending therebetween so as to for crown blocks. The crown block is circumferentially subdivides into two block pieces by a crown narrow groove. The crown axial groove is provided in the groove bottom with a tie bar rising therefrom and connecting the circumferentially adjacent two crown blocks each other. The crown axial grooves are inclined at an angle α of from 10 to 30 degrees with respect to the tire axial direction.The central circumferential groove and an axially inner part of the crown axial groove which part is axially inside the tie bar, are shallower than the crown circumferential groove.
Abstract:
A pneumatic tire includes a tread having a center main groove and a pair of shoulder main grooves, a pair of center portions between the center main groove and the shoulder main grooves, and a pair of shoulder portions between the shoulder main groove and tread edges. Each center portion includes: center lateral grooves extending from the shoulder main groove toward the axially inside of the tire without reaching the center main groove so as to have an axially inner end thereof on the center portion with an angle of 35 to 65 degrees with respect to an axial direction of the tire; center lateral sipes extending from axially inner ends of the center lateral grooves to the center main groove in the same inclination direction as the center lateral groove at an angle of 35 to 65 degrees with respect to an axial direction of the tire.
Abstract:
A pneumatic tire tread includes center lateral grooves inclined to the reverse direction of the belt cords of the outermost belt ply of the belt, a groove width Wyc of the center lateral grooves being from 1.0 to 6.0 mm, shoulder lateral grooves being inclined to the same direction of the belt cords of the outermost belt ply, the shoulder lateral grooves having a narrow-width portion having a groove width Wys1 of from 0.4 to 1.5 mm at a position where it connects to a shoulder circumferential main groove, and a wide-width portion having a groove width Wys2 of from 2.0 to 8.0 mm which is connected to the narrow-width portion and extends beyond the tread ground-contact edge.