Abstract:
An unmanned aircraft system includes a testing and calibration system that enables automated testing of movable parts of an unmanned aircraft. The testing and calibration system uses a camera-based technique to determine the position and angle of movable parts, in order to establish whether or not those parts are moving in a manner consistent with correct function.
Abstract:
Disclosed is an aerial vehicle such as an unmanned aerial vehicle (UAV). In one implementation, the vehicle includes a base and one or more front-facing arms extending from the base. Each front facing arm includes an inner segment affixed to the base and an outer segment. The vehicle also includes a rear-facing arm affixed to the base. In another implementation, a UAV includes one or more arms mounted to a base. At least one of the arms includes a first segment that is proximate to the base and a second segment that is distant from the base. A first hinge connects the first segment and the second segment. Various dimensions of the UAV are reduced when the arm(s) are folded along the first hinge.
Abstract:
An emergency unmanned aerial vehicle (UAV) and a method for employing a UAV. The method includes storing a digital elevation model (DEM) and associated data including locations of communication networks, updating the locations of communication networks in the associated data via a wireless transceiver, and storing position information determined by a global navigation satellite system (GNSS) receiver. The method includes detecting a predetermined condition using electronic sensors, determining whether the UAV is within a communications range of any communication network via the wireless transceiver, and determining a path to a communication network using the DEM and the associated data. The method also includes causing the UAV to become airborne and fly along the path, and transmitting a distress message via the wireless transceiver to the communication network, the distress message including position information corresponding to a location where the UAV detected the predetermined condition.
Abstract:
The present invention discloses a multi-rotor structure applied to an unmanned aerial vehicle, and belongs to the technical field of unmanned aerial vehicles. The unmanned aerial vehicle includes a fuselage, first rotors, second rotors and rotor shafts; and the multi-rotor structure includes first rotary connecting pieces and second rotary connecting pieces. The first rotary connecting piece includes a first motor and a first dismounting thread group, the first rotor is detachably connected with the first motor through the first dismounting thread group to achieve the mounting or dismounting between the first rotor and the first motor by rotating the first rotor; the second rotary connecting piece includes a second motor and a second dismounting thread group, and the second rotor is detachably connected with the second motor through the second dismounting thread group to achieve the mounting or dismounting between the second rotor and the second motor by rotating the second rotor. The present invention has the advantages of being fast, portable and high in working efficiency.
Abstract:
An information gathering apparatus includes an information acquisition sensor unit to acquire information and a propelling system to fly in air. The information gathering apparatus includes a supporting unit and a controller. The supporting unit supports the propelling system in the first and second configurations. The controller moves the supporting unit such that the supporting unit supports the propelling system in the second configuration after the information gathering apparatus is thrown up in a state where the supporting unit supports the propelling system in the first configuration.
Abstract:
A payload launch system that uses an inflatable air bag ram to launch a payload, such as an unmanned aerial vehicle, from a launch chamber of a launch tube. The air bag ram seals with the interior surface of the launch tube to isolate a dump valve that controls the flow of compressed gas from a gas storage chamber into the air bag ram. The air bag ram sealing with the interior surface of the launch tube isolates the dump valve, both pre-launch and post-launch, from any water or debris carried in with water in which the payload launch system is disposed
Abstract:
An unmanned aerial vehicle arm adjustment device for adjusting an unmanned aerial vehicle arm into a folding state or an extracting state with respect to a fuselage of the aerial vehicle includes: left and right curb plates connected to the fuselage; a rocking arm connected to the unmanned aerial vehicle arm, wherein one end of the rocking arm is articulated with the left and right curb plates, and a first engaging part is provided on the rocking arm; and a locking member articulated with the left and right curb plates, wherein the locking member is provided with a second engaging part for engaging with the first engaging part; wherein the locking member is adapted to rotate in a first direction to force the second engaging part to engage with the first engaging part so as to hold the rocking arm such that the unmanned aerial vehicle arm is in the extracting state; and wherein the locking member is adapted to rotate in a second direction opposite to the first direction to force the second engaging part to disengage with the first engaging part so as to release the rocking arm such that the unmanned aerial vehicle arm is able to be rotated into the folding state.
Abstract:
A vertical takeoff and landing (VTOL) unmanned aircraft system (UAS) may be uniquely capable of VTOL via a folded wing design while also configured for powered flight as the wings are extended. In a powered flight regime with wings extended, the VTOL UAS may maintain controlled powered flight as a twin pusher canard design. In a zero airspeed (or near zero airspeed) nose up attitude in a VTOL flight regime with the wings folded, the unmanned aircraft system may maintain controlled flight using main engine thrust as well as vectored thrust as a vertical takeoff and landing aircraft. An airborne transition from VTOL flight regime to powered flight and vice versa may allow the VTOL UAS continuous controlled flight in each regime.
Abstract:
A foldable drone is provided to improve the portability of the drone, which includes a drone body and a rotary wing part connected to the drone body. The rotary wing part includes a first rotary wing module and a second rotary wing module with each having at least one rotary wing, and the first rotary wing module and the second rotary wing module are respectively articulated to two sides of the drone body, to allow the first rotary wing module and the second rotary wing module to rotate about their respective articulating shafts, so as to be folded or unfolded.
Abstract:
This disclosure generally relates to an automotive drone deployment system that includes at least a vehicle and a deployable drone that is configured to attach and detach from the vehicle. More specifically, the disclosure describes the vehicle and drone remaining in communication with each other to exchange information while the vehicle is being operated in an autonomous driving mode so that the vehicle's performance under the autonomous driving mode is enhanced.