Abstract:
A composite turbine disc includes a high nickel rim section and a steel bore section. The rim section is formed from a high nickel alloy which provides a higher melting point as compared to the material used for the bore section. A plating or forged welding enhanced agent layer is disposed between the bore section and rim section. Composite disc can be formed by forging the rim and bore material together, or by welding the rim and bore material together.
Abstract:
A sintered material and a method for the production thereof is described. The material comprises an alloy selected from one of the groups having a composition comprising in weight %: either Cr 5-30/Mo 0-15/Ni 0-25/W 0-15/C 0-5/Si 0-5/Fe 0-5/Mn 0-5/others 10 max/Co balance, or Cr 10-20/Mo 0-15/Co 0-20/W 0-5/Fe 0-20/Al 0-5/Ti 0-5/others 15 max/Ni balance; said alloy having incorporated therein from 3-15 weight % of Sn; and optionally from 1-6 weight % of a solid lubricant material.
Abstract translation:对烧结材料及其制造方法进行说明。 该材料包括选自以下组中的一种的合金:具有重量%的组成:Cr 5-30 / Mo 0-15 / Ni 0-25 / W 0-15 / C 0-5 / Si 0-5 / Fe 0-5 / Mn 0-5 /其他10最大/ Co平衡,或Cr 10-20 / Mo 0-15 / Co 0-20 / W 0-5 / Fe 0-20 / Al 0-5 / Ti 0 -5 /其他15最大/镍平衡; 所述合金从其中加入3-15重量%的Sn; 和任选的1-6重量%的固体润滑剂材料。
Abstract:
A rotor (10) for a thermal machine, in particular a steam or gas turbine, includes a plurality of rotor disks (12, 13, 14) which are arranged one behind the other in the rotor axis (11) and are welded to one another, at least one first rotor disk (13), which is arranged in a section of the rotor (10) which is subject to particularly high thermal loads, including a nickel-base alloy which is able to withstand high temperatures and is welded to at least one second, adjacent rotor disk (12, 14), which includes a steel which is able to withstand high temperatures. In a rotor (10) of this type, accurate testing of the welded joints located in the high-temperature region is achieved by nondestructive testing by virtue of the fact that a first rotor ring (15, 16) of a steel which is able to withstand high temperatures is inserted between the first and second rotor disks (13 and 12, 14), which first rotor ring (15, 16) on one side is welded to the second rotor disk (12, 14) and on the other side is joined to the first rotor disk (13) via an encircling weld seam (21, 21′, 26).
Abstract:
A nickel base single crystal compliant layer on a ceramic blade has the capability to sustain high stresses and high operating temperature. Layers of nickel and platinum bonded on a single crystal superalloy over a sputtered gold-chromium layer support the high stress levels at elevated temperature without extrusion of the soft platinum or nickel layer and without destruction of an NiO compliant surface. The compliant layers have survived stress and temperature conditions without failure to the ceramic blade and the system can be stressed/heated and unloaded/cooled repeatedly without damage to the ceramic blades. A single crystal nickel base superalloy (i.e., SC180) has high strength properties at elevated temperature. Thin layers of chromium followed by gold are e-beam evaporated on one side of a polished surface of the alloy. Pure nickel is electroplated over this e-beam gold-chromium layer. Platinum is either electroplated or plated electrolessly over the nickel layer. The structure is annealed in vacuum or inert atmosphere to allow the diffusion of gold-chromium alloy into the superalloy and permit the nickel layer and diffusion of nickel into platinum to form a multilayer structure which is metallurgically bonded. The sheet is oxidized in air to allow diffusion of the nickel layer through the platinum to come to the surface and oxidize forming nickel oxide. This nickel oxide layer acts as the load distribution layer which does not extrude and the structural integrity of the compliant layer is maintained by the high-strength single crystal superalloy.
Abstract:
A variable displacement compressor optionally varies displacement based upon pressure in a crank chamber for adjusting the pressure in the crank chamber by varying an opening degree of a passage that interconnects the crank chamber and one of relatively high and low pressure regions of the refrigeration cycle. A control valve of the variable displacement compressor has a valve seat and a valve. The valve seat has a seat surface for adjusting the opening degree of the passage. The valve has a valve surface for adjusting the opening degree of the passage. At least one of the seat surface and the valve surface is made of a material with relatively high hardness.
Abstract:
A sliding member comprising at least one sliding layer including a solid lubricant and at least one thermosetting resin with which particles of the solid lubricant are held together, the solid lubricant containing 10-40 vol. % of polytetrafluoroethylene. A sliding device comprising: at least one first sliding member each including at least one sliding layer which includes a solid lubricant and at least one thermosetting resin with which particles of the solid lubricant are held together, the solid lubricant containing 10-40 vol. % of polytetrafluoroethylene; and at least one second sliding member plated with a nickel-based composition; and wherein the at least one first sliding member and the at least one second sliding member slide relative to each other.
Abstract:
A novel blade configuration does not exceed the permitted stresses for particular loads, especially as a result of centrifugal forces and which at the same time, allows the turbomachine to function with a high degree of efficiency. To this end, a moving blade for the turbomachine contains at least partially a cellular material, especially a foamed metal. The cellular material can be provided e.g. in the hollowed-out part of the moving blade.
Abstract:
A nickel base single crystal compliant layer on a ceramic blade has the capability to sustain high stresses and high operating temperature. Layers of nickel and platinum bonded on a single crystal superalloy over a sputtered gold-chromium layer support the high stress levels at elevated temperature without extrusion of the soft platinum or nickel layer and without destruction of an NiO compliant surface. The compliant layers have survived stress and temperature conditions without failure to the ceramic blade and the system can be stressed/heated and unloaded/cooled repeatedly without damage to the ceramic blades. A single crystal nickel base superalloy (i.e., SC180) has high strength properties at elevated temperature. Thin layers of chromium followed by gold are e-beam evaporated on one side of a polished surface of the alloy. Pure nickel is electroplated over this e-beam gold-chromium layer. Platinum is either electroplated or plated electrolessly over the nickel layer. The structure is annealed in vacuum or inert atmosphere to allow the diffusion of gold-chromium alloy into the superalloy and permit the nickel layer and diffusion of nickel into platinum to form a multilayer structure which is metallurgically bonded. The sheet is oxidized in air to allow diffusion of the nickel layer through the platinum to come to the surface and oxidize forming nickel oxide. This nickel oxide layer acts as the load distribution layer which does not extrude and the structural integrity of the compliant layer is maintained by the high-strength single crystal superalloy.
Abstract:
In a process for the manufacture of a blade/vane of a turbomachine, the blade/vane is made of a metallic enveloping structure and a supporting structure made of composite material provided inside of the enveloping structure and suitably joined to the enveloping structure. A metal-felt weave is welded or soldered/brazed to the sheet making up the enveloping structure, whereupon this sheet-weave-assembly is shaped by hydroforming or an internal high-pressure forming process to provide the enveloping structure of the blade/vane. Finally, the composite material making up the supporting structure is introduced into the cavity of the enveloping structure.
Abstract:
A nickel base single crystal compliant layer on a ceramic blade has the capability to sustain high stresses and high operating temperature. Layers of nickel and platinum bonded on a single crystal superalloy over a sputtered gold-chromium layer support the high stress levels at elevated temperature without extrusion of the soft platinum or nickel layer and without destruction of an NiO compliant surface. The compliant layers have survived stress and temperature conditions without failure to the ceramic blade and the system can be stressed/heated and unloaded/cooled repeatedly without damage to the ceramic blades. A single crystal nickel base superalloy (i.e., SC180) has high strength properties at elevated temperature. Thin layers of chromium followed by gold are e-beam evaporated on one side of a polished surface of the alloy. Pure nickel is electroplated over this e-beam gold-chromium layer. Platinum is either electroplated or plated electrolessly over the nickel layer. The structure is annealed in vacuum or inert atmosphere to allow the diffusion of gold-chromium alloy into the superalloy and permit the nickel layer and diffusion of nickel into platinum to form a multilayer structure which is metallurgically bonded. The sheet is oxidized in air to allow diffusion of the nickel layer through the platinum to come to the surface and oxidize forming nickel oxide. This nickel oxide layer acts as the load distribution layer which does not extrude and the structural integrity of the compliant layer is maintained by the high-strength single crystal superalloy.